Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 140-143    
  无机非金属及其复合材料 |
微波加热Mg-TiO2混合物的研究
居殿春1,2, 武兆勇1, 张荣良1,2, 王海风3, 王锋3, 严定鎏3
1 江苏科技大学(张家港)冶金与材料工程学院,张家港 215600;
2 江苏科技大学张家港产业技术研究院精细冶金研究所,张家港 215600;
3 钢铁研究总院先进钢铁流程及材料国家重点实验室,北京 100081
Study on Microwave Heating Mg/TiO2 Mixture
JU Dianchun1,2, WU Zhaoyong1, ZHANG Rongliang1,2, WANG Haifeng3, WANG Feng3, YAN Dingliu3
1 School of Metallurgical and Materials Engineering, Zhangjiagang Campus of Jiangsu University of Science and Technology, Zhangjiagang 215600, China;
2 Fine Metallurgy Institute, Zhangjiagang Industrial Technology Research Institute, Jiangsu University of Science and Technology, Zhangjiagang 215600, China;
3 State Key Laboratory of Advanced Steel Processes and Products, Central Iron and Steel Research Institute, Beijing 100081, China
下载:  全 文 ( PDF ) ( 6892KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在氩气气氛下微波辐射加热Mg-TiO2混合物,通过XRD、SEM研究了不同n(Mg)/n(TiO2)和反应温度对产物物相、形貌的影响。n(Mg)/n(TiO2)影响产物中Mg-TiO2化合物的种类和亚氧化钛的生成,对产物的形貌没有明显影响。反应温度影响产物的物相比例,温度升高会导致产物的颗粒烧结粗大。使用微波加热Mg-TiO2虽然生成了钛酸镁及亚氧化钛,但生成量少、分离困难,因此该制备方法不可取。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
居殿春
武兆勇
张荣良
王海风
王锋
严定鎏
关键词:  钛酸镁  Mg2TiO4  亚氧化钛  微波加热    
Abstract: The Mg/TiO2 mixture was heated by microwave radiation in an argon atmosphere. The effects of different n(Mg)/n(TiO2) and reaction temperatures were studied. The n(Mg)/n(TiO2) affects the types of Mg-TiO2 compounds and the production of titanium dioxide in the product. It has no obvious effect on the morphology of the product. The reaction temperature affects the product comparative example. The increase of temperature will lead to the coarse sintering of the product particles. Although magnesium titanate and TinO2n-1 are formed in the product, the microwave heating Mg-TiO2 process is not suitable for preparing magnesium titanate and titanium dioxide due to the difficulty of separation and the small amount of formation.
Key words:  MgO-TiO2    Mg2TiO4    TinO2n-1    microwave heating
                    发布日期:  2020-07-01
ZTFLH:  TF03+1  
基金资助: 国家重点实验室开放基金资助项目(SKLASPP201601);江苏科技大学博士启动基金资助项目(120140008);江苏科技大学张家港校区研究生创新工程
作者简介:  居殿春,江苏科技大学讲师,2001年9月至2008年7月在昆明理工大学获得金属材料工程专业学士学位和材料学硕士学位,2008年9月至2012年7月在钢铁研究总院获得材料学博士学士,2012年7月至2014年9月在钢铁研究总院冶金工程博士后流动工作,2014年9月至今在江苏科技大学冶金工程系任教。以第一作者发表学术论文10余篇,申请国家发明专利10余项。研究工作主要围绕短流程冶金新工艺、资源综合利用、新型功能材料制备的基础理论及应用研究,主持包括“十三五”国家重点研发计划项目子课题、企业横向课题等。
引用本文:    
居殿春, 武兆勇, 张荣良, 王海风, 王锋, 严定鎏. 微波加热Mg-TiO2混合物的研究[J]. 材料导报, 2020, 34(Z1): 140-143.
JU Dianchun, WU Zhaoyong, ZHANG Rongliang, WANG Haifeng, WANG Feng, YAN Dingliu. Study on Microwave Heating Mg/TiO2 Mixture. Materials Reports, 2020, 34(Z1): 140-143.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/140
1 张先云.MgTiO3基射频高Q陶瓷材料的研究.硕士学位论文,华中科技大学,2011.
2 高静,吕本印.现代盐化工,2017,44(3),6.
3 赵莉,沈春英,丘泰.硅酸盐通报,2010,29(4),866.
4 陶锋烨,葛迪云,张火荣.电子元件与材料,2003(2),28.
5 Wang Huanping, et al. Journal of Materials Science & Technology,2012,28(8),751.
6 赵明,焦丽芳,袁华堂,等.南开大学学报(自然科学版),2006,39(3),39.
7 彭子飞,冯贵武,汪国忠,等.应用化学,1996,13(6),93.
8 李皓.MgO-TiO2体系微波介质陶瓷材料结构与性能优化研究.博士学位论文,电子科技大学,2016.
9 Cheng L, Liu P, Qu S X, et al.Journal of Alloys and Compounds,2015,623,238.
10 Isobe M, Ueda Y.Journal of Alloys & Compounds,2004,383(1-2),88.
11 Ono H, Nakajima K, Maruo R, et al.ISIJ International,2009,49(7),957.
12 宋建勋.二氧化钛热还原提取金属钛新工艺的实验研究.硕士学位论文,昆明理工大学,2010.
13 姚永林,樊友奇,赵卓.中国专利,CN201710936571.X,2018.
14 宋西平,陈宁,赵超.中国专利,CN201110435831.8,2013.
No related articles found!
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed