Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10103-10107    https://doi.org/10.11896/cldb.18120077
  金属与金属基复合材料 |
半固态搅拌参数对A356-10%B4Cp复合材料显微组织的影响
张雪飞1, 白景元2, 管仁国2,3
1 沈阳大学机械工程学院,沈阳 110044
2 东北大学材料科学与工程学院,沈阳110819
3 西北工业大学凝固技术国家重点实验室,西安 710072
Effect of Parameters of Semi-solid Stirring on Microstructure of A356-10%B4Cp Composites
ZHANG Xuefei1, BAI Jingyuan2, GUAN Renguo2,3
1 School of Mechanical Engineering, Shenyang University, Shenyang 110044, China
2 School of Materials Science and Engineering, Northeastern University,Shenyang 110819, China
3 State Key Laboratory of Solidification Technology, Northwest Polytechnic University, Xi'an 710072, China
下载:  全 文 ( PDF ) ( 3813KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用一种半固态搅拌与热轧工艺制备A356-10%B4Cp(质量分数,下同)复合板材,研究了半固态搅拌参数对A356-10%B4Cp复合材料铸造及热轧态显微组织的影响。研究发现:搅拌温度为580 ℃、搅拌时间为15 min、搅拌转速在800 r/min以内时,α-Al的晶粒平均直径和平均圆度随着搅拌速度的增加而减小,B4C颗粒的分布也随之更加均匀。当搅拌转速超过800 r/min时,α-Al晶粒平均直径和平均圆度反而不再减小,且B4C颗粒的分布不均匀。当搅拌温度为580 ℃、搅拌转速为800 r/min、搅拌时间在5~35 min内时,α-Al晶粒平均直径和平均圆度随着搅拌时间的延长而减小,B4C颗粒的分布也随之均匀。优化的工艺参数为:搅拌温度为580 ℃,搅拌转速为800 r/min,搅拌时间为35 min。该工艺制备的铸锭经过热轧后,可获得表面光洁的A356-10%B4Cp复合板材。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张雪飞
白景元
管仁国
关键词:  铝基复合材料  热轧  显微组织  颗粒增强    
Abstract: In this paper, a semi-solid stirring and hot rolling process was used to prepare A356-10%B4Cp composite sheet, the effects of semi-solid stirring parameters on the as-cast and hot-rolled microstructures of the A356-10%B4Cp composites were studied. It is found that, when the mi-xing temperature is 580 ℃, the mixing time is 15 min, stirring speed is within 800 r/min, the average diameter and roundness of α-Al grains decrease with the increase of stirring speed, and the distribution of B4C particles tends to be uniform. When the stirring speed exceeds 800 r/min, the average diameter and roundness of α-Al did not decrease, and the distribution of B4C particles tends to be nonuniform. When the mixing temperature is 580 ℃, stirring speed is 800 r/min, stirring time is within 5—35 min, the average diameter and roundness of α-Al decreased with the increase of stirring time, and the distribution of B4C particles was also uniform. The optimum technological parameters are as follows: stirring temperature is 580 ℃, stirring speed is 800 r/min, stirring time is 35 min. The A356-10%B4Cp composite plate with smooth surface can be obtained after hot rolling of the composite ingot prepared by the process.
Key words:  aluminum matrix composites    hot rolling    microstructure    particles reinforced
               出版日期:  2020-05-25      发布日期:  2020-04-26
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(51474063)
通讯作者:  管仁国,2003年毕业于东北大学,获博士学位,2003年3月至2004年4月于韩国浦项工业大学材料系攻读博士后,东北大学教授。主持国家863计划项目、国家优秀青年科学基金项目、国家自然科学基金重点项目和面上项目、教育部新世纪人才计划项目、教育部霍英东青年教师基金项目以及省科技计划项目等20余项。发表论文140余篇,SCI收录40余篇,EI收录80余篇,以主编出版学术专著1部,参加出版译著1部。renguosn@163.com   
作者简介:  张雪飞,沈阳大学副教授。2007年博士毕业于东北大学材料加工专业,主要研究方向:新材料加工工艺及组织性能。曾主持“HA涂层Mg-Zn-Sr合金生物材料的应用基础研究”国家自然科学基金(子课题)的研究,参与“铝合金导线连续ECAE动态时效过程析出相演变与性能强化机理”国家自然科学基金等多项研究,发表论文10余篇。
引用本文:    
张雪飞, 白景元, 管仁国. 半固态搅拌参数对A356-10%B4Cp复合材料显微组织的影响[J]. 材料导报, 2020, 34(10): 10103-10107.
ZHANG Xuefei, BAI Jingyuan, GUAN Renguo. Effect of Parameters of Semi-solid Stirring on Microstructure of A356-10%B4Cp Composites. Materials Reports, 2020, 34(10): 10103-10107.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120077  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10103
1 Zhang L J, Qiu F, Wang J G, et al Materials Science & Engineering A,2015,626,338.
2 Qi H B, Ding Z L, Fan Y C, et al. Acta Materiae Compositae Sinica, 2001, 18(1),62(in Chinese).
齐海波,丁占来,樊云昌,等.复合材料学报, 2001, 18(1),62.
3 Karamic B, Nair Fehmi. Wear, 2008, 265(11), 1741.
4 Mahmoud E R I, Takahashi M, Shibayanagi T, et al. Wear, 2009, 268(9), 1111.
5 Selvam J D R, Smart D S R, Dinaharan I. Materials & Design, 2013, 49(16),28.
6 Wang Y Q, Song J I. Wear, 2011, 270(7), 499.
7 Lashgari H R, Sufizadeh A R, Emamy M. Materials & Design, 2010, 31(4), 2187.
8 Zhang J, Guan R G, Tie D, et al. Advanced Manufacturing Processes, 2015, 30(3),6.
9 Hu Q, Zhao H, Ge J. Materials Science & Engineering A, 2016, 650,478.
10 Chen H S, Wang W X, Nie H H, et al. Vacuum, 2017, 143,363.
11 Shaga A, Shen P, Sun C, et al. Materials Science and Engineering: A, 2015, 630, 78.
12 Yang B, Wang F, Zhang J S. Acta Materialia, 2003, 51(17),4977.
13 Tekmen C, Cocen U. Journal of Composite Materials, 2008, 42(13),1271.
14 Mandal D, Dutta B K, Panigrahi S C. Wear, 2004, 257(7), 654.
15 Zhang Xuefei, Bai Jingyuan, Guan Renguo,et al. Materials Review B: Research Papers, 2019,33(1),298(in Chinese).
张雪飞,白景元,管仁国,等.材料导报:研究篇, 2019,33(1),298.
16 Fu Xueying. Study on processing condition of B4C/Al composites prepared by stirring casting. Master's Thesis, Harbin Engineering University, 2005(in Chinese).
傅雪莹. 搅拌法制备B4C/Al复合材料的工艺研究.硕士学位论文,哈尔滨工程大学,2005.
17 Shan Xiaolei. Research on sem-solid microstructure of the AZ91D magnesium alloy fabricated by coupled large deformation-isothermal method. Master's Thesis, Harbin Institute of Technology, China, 2006(in Chinese).
单晓磊. 大变形—等温耦合制备AZ91D半固态组织研究.硕士学位论文,哈尔滨工业大学, 2006.
[1] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[2] 韩善果, 杨永强, 罗子艺, 蔡得涛, 郑世达. 线能量对铝/钢双光束激光焊接接头组织及性能的影响[J]. 材料导报, 2021, 35(2): 2109-2114.
[3] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
[4] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[5] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[6] 臧恒波, 乔菁. 无压浸渗工艺对Al2O3/Al-Mg-Si复合材料微观组织和力学性能的影响[J]. 材料导报, 2020, 34(Z2): 371-375.
[7] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[8] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[9] 周长壮, 马琳, 崔庆贺, 梁金第. 颗粒增强铝基复合材料TLP连接综述与展望[J]. 材料导报, 2020, 34(Z1): 351-355.
[10] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[11] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[12] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[13] 谢锐, 吕铮, 卢晨阳, 王晴, 徐世海, 刘春明. 热等静压温度对14Cr-ODS钢显微组织及力学性能的影响[J]. 材料导报, 2020, 34(8): 8141-8148.
[14] 周宇, 钱丽华, 刘天宇, 张泉, 吕知清. 冷轧板条马氏体组织与力学性能研究[J]. 材料导报, 2020, 34(8): 8154-8158.
[15] 王婷玥, 邢书明, 敖晓辉, 王营. 压力对挤压铸造E级钢低温冲击韧性的影响[J]. 材料导报, 2020, 34(6): 6138-6143.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed