Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 189-197    
  无机非金属及其复合材料 |
微波烧结制备玻璃陶瓷的研究进展
李保卫1, 李鑫1, 崔俊杰3, 张宇轩1, 张雪峰1,2, 贾晓林1, 欧阳顺利1
1 内蒙古自治区白云鄂博矿多金属资源综合利用重点实验室,包头 014010;
2 内蒙古科技大学理学院,包头 014010;
3 内蒙古科技大学信息与网络中心,包头 014010
Research Progress in Preparation of Glass Ceramics by Microwave Sintering
LI Baowei1, LI Xin1, CUI Junjie3, ZHANG Yuxuan1, ZHANG Xuefeng1,2, JIA Xiaolin1, OUYANG Shunli1
1 Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010;
2 College of Science, Inner Mongolia University of Science and Technology, Baotou 014010;
3 Information and Network Center, Inner Mongolia University of Science and Technology, Baotou 014010
下载:  全 文 ( PDF ) ( 3432KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微波作为一种节能快速的烧结手段被广泛应用于无机非金属材料的烧结过程中。玻璃陶瓷是通过对基质玻璃的核化和晶化进行控制而制得的一种新型材料,原料甚至可以使用矿渣、炉渣、粉煤灰等固体废弃物。近年来逐渐出现微波烧结在玻璃陶瓷方面的应用,研究发现微波烧结可以显著缩短玻璃陶瓷的制备时间,增强其性能。然而,目前尚未完全明确微波烧结在玻璃陶瓷析晶过程中的作用机理,且微波非热效应也是一个有待解释的重要难题。本文对微波烧结制备玻璃陶瓷和烧结过程中产生的非热效应进行了综述,对微波烧结应用在玻璃陶瓷上特别是功能玻璃陶瓷上的进展进行了概括。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李保卫
李鑫
崔俊杰
张宇轩
张雪峰
贾晓林
欧阳顺利
关键词:  微波烧结  玻璃陶瓷  微波非热效应    
Abstract: Microwave, as an energy-saving and fast sintering method, which is widely used in the sintering process of inorganic non-metal materials. Glass ceramics, as a new material obtained by controlling the nucleation and crystallization of matrix glass. The raw materials can even use solid waste such as slag, slag and fly ash. In recent years, the application of microwave sintering in glass ceramics has gradually appeared. It is found that microwave sintering can significantly shorten the preparation time and enhance the performance of glass ceramics. However, the mec-hanism of microwave sintering for crystallization of glass-ceramics is not fully clear, and the non-thermal microwave effect is an important problem to be explained. The non-thermal effects of microwave sintering in the preparation of glass-ceramics and the process are reviewed. The progress of microwave in the application and functionalization of glass ceramics is summarized.
Key words:  microwave sintering    glass ceramics    non-thermal microwave effect
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TQ171  
基金资助: 国家自然科学基金(11564031;51774189);内蒙古自治区白云鄂博矿多金属资源综合利用重点实验室——省部共建国家重点实验室培育基地(2016CXYD-KYPT);内蒙古自治区高等学校“青年科技英才支持计划”(NJYT-17-B10);内蒙古科技大学科研仪器专项项目(2015KYYQ06)
通讯作者:  ouyangshunli@imust.cn   
作者简介:  李保卫,男,博士,教授,博士研究生导师,内蒙古科技大学书记,享受国务院政府特殊津贴。1982年毕业于西北大学理论物理专业获理学学士学位,2002年毕业于北京科技大学钢铁冶金专业获工学博士学位,1993—1998年曾三次作为高级访问学者在美国俄亥俄州立大学从事科学研究工作。长期致力于白云鄂博矿多金属资源综合利用、冶金过程模拟与优化等领域的科学研究与技术开发工作,主持承担国家自然科学基金项目、国家973计划、内蒙古科技重大专项等课题50余项。获国家科技进步二等奖1项,内蒙古科技进步一等奖3项、教育部科技进步一等奖1项、国家优秀教学成果二等奖1项。出版专著3部。发表学术论文200余篇,其中有120余篇被SCI/EI收录。授权国家发明专利11项,制订国家行业标准1项。   李鑫,男,硕士研究生,内蒙古科技大学,研究方向为玻璃陶瓷的微波烧结。
引用本文:    
李保卫, 李鑫, 崔俊杰, 张宇轩, 张雪峰, 贾晓林, 欧阳顺利. 微波烧结制备玻璃陶瓷的研究进展[J]. 材料导报, 2019, 33(Z2): 189-197.
LI Baowei, LI Xin, CUI Junjie, ZHANG Yuxuan, ZHANG Xuefeng, JIA Xiaolin, OUYANG Shunli. Research Progress in Preparation of Glass Ceramics by Microwave Sintering. Materials Reports, 2019, 33(Z2): 189-197.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/189
1 何峰,等.微晶玻璃制备与应用,化学工业出版社,2017.
2 Mishra R R, Sharma A K. Composites Part A: Applied Science and Manufacturing,2016,81,78.
3 Clark D E, Sutton W H. Annual Review of Materials Science.1996,26,299.
4 牟群英,李贤军.物理,2004,33(6),438.
5 Mahmoud M M. Journal of the American Ceramic Society, DOI: 10.1111/j.1551-2916.2011.04936.x.
6 Rybakov K I, Olevsky E A, Krikun E V, et al. Journal of the American Ceramic Society,2013,96(4),1003.
7 Raveendran A, Sebastian M T, Raman S. Journal of Electronic Materials,2019,48(5),2601.
8 Tian J, Wang S, Yang K, et al. Ceramics International,2018,44(13),15490.
9 丛丽萍,张占平,齐育红,等.材料导报,2016(S1),121.
10 Ahmad S, Mahmoud M M, Seifert H J. Journal of Alloys and Compounds,2019,797,45.
11 Boonyapiwat A, Folz D C, Clark D E. Ceramic Transactions,2000,101,87.
12 West J K, Clark D E. Ceramic Transactions,2000,101,53.
13 Clark D E, Folz D C, West J K. Materials Science & Engineering A,2000,287(2),153.
14 West J K, Clark D E. In: Proceedings, Second World Congress on Microwave and Radio Frequency Processing. Ohio,2000,pp.43.
15 Mahmoud M M, Thumm M. Journal of the European Ceramic Society,2015,35(10),2915.
16 黄卡玛,杨晓庆.自然科学进展,2006,16(3),273.
17 马双忱,姚娟娟,金鑫,等.化学通报,2011,74(1),41.
18 Li J, Li B W, Wang L, et al. Advanced Materials Research,2011,284-286,1237.
19 李解,韩磊,李保卫,等.过程工程学报,2014,14(6),973.
20 Kappe, Oliver C. Chemical Society Reviews,2013,42(12),4977.
21 Mahmoud M M, Folz D C,Suchicital C T A, et al. Journal of the American Ceramic Society,2012,95(2),579.
22 Das S, Basu D, Datta S, et al. Transactions of the Indian Ceramic Society,2008,67(3),139.
23 Das S, Mukhopadhyay A K, Datta S, et al. Journal of the European Ceramic Society,2008,28(4),729.
24 Das S, Mukhopadhyay A K, Datta S, et al. Ceramics International,2010,36(3),1125.
25 Li H X, Li B W, Deng L B, et al. Journal of the European Ceramic Society,2018,38,2632.
26 Li H X, Li B W, Deng L B, et al. Journal of the European Ceramic Society,2019,39,1389.
27 Binner J, Vaidhyanathan B, Wang J, et al. Journal of Microwave Power and Electromagnetic Energy,2007,42(2),47.
28 吴鹏,程金树,谢俊,等.玻璃,2006(1),3.
29 Thridandapani R R, Folz D C, Clark D E. International Journal of Applied Ceramic Technology,2014,11(5),938.
30 Sumana G, Kalyan S P, Someswar D, et al. Current Trends on Glass and Ceramic Materials, Bentham Science,2013.
31 Bykov Y, Eremeev A, Holoptsev V. MRS Proceedings,1996,430,385.
32 Ozawa T. Polymer,1971,12(3),150.
33 Wu D, Tian Y,Wen X, et al. Journal of the Taiwan Institute of Chemical Engineers,2015,48,81.
34 Arrhenius S A. Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics,1889,4,96.
35 Wong B. Processing and Properties of Advanced Ceramics and Composites VI, John Wiley & Sons,2014.
36 Siligardi C, Leonelli C, Fang Y, et al. Materials Research Society Proceedings,1996,430,429.
37 李保卫,杜永胜,张雪峰,等.人工晶体学报,2012,41(5),1391.
38 欧阳顺利,李保卫,张雪峰,等.光谱学与光谱分析,2015,35(8),2316.
39 Li B W, Li H X, Zhang X F, et al. International Journal of Minerals, Metallurgy, and Materials,2015,22(12),1342.
40 张雪峰,魏海燕,欧阳顺利,等.人工晶体学报,2016,45(9),2227.
41 Philibert J. Atom movements, Les Editions de Physique,1991.
42 Fathi Z, Clark D E, Hutcheon R. Microwave processing of materials Ⅲ, Materials Research Society,1992.
43 Kuczynski G C. Transactions of the AIME,1949,85,169.
44 Herring C. Journal of Applied Physics,1950.
45 Coble, R L. Journal of Applied Physics,1961,32(5),55.
46 D’Arrigo M C, Siligardi C, Leonelli C, et al. Journal of Porous Mate-rials,2002,9,299.
47 Willert-Porada M. Microwaves: Theory and Application in Materials Processing IV, The American Ceramic Society,1997.
48 Lange F F. Journal of the American Ceramic Society,1983,24(2),83.
49 Bykov Y V, Egorov S V, Eremeev A G, et al. Journal of Materials Science,2001,36(1),131.
50 Booske J H, Cooper R F, Freeman S A, et al. Physics of Plasmas,1998,5(5),1664.
51 Morsi M, Yuantao C, Magnus R, et al. Materials,2016,9(7),506.
52 Davis C, Nino J C. Journal of the American Ceramic Society,2015,98(8),1.
53 Han H, Ghosh D, Jones J L, et al. Journal of the American Ceramic So-ciety,2012,96(2),485.
54 Davis C, Pertuit A L, Nino J C. Journal of the American Ceramic Society,2016,100(1),1.
55 Ouyang S L, Zhang Y X, Chen Y X, et al. Scientific Reports,2019,9(1),1964.
56 Jou C J G. Journal of Environmental Management,2006,78(1),1.
57 Tian Y, Zuo W, Chen D. Journal of Hazardous Materials,2011,196,370.
58 吴迪,左薇,张军,等.中国给水排水,2015(15),6.
[1] 郑晗煜, 蒲永平, 李来平, 薛建嵘, 高选乔, 胡忠武, 任广鹏. 储能介电玻璃陶瓷的制备及研究进展[J]. 材料导报, 2019, 33(Z2): 20-23.
[2] 刘贺, 傅仁利, 何钦江, 李国郡, 王贺. SiO2-BPO4/LMZBS低温烧结玻璃陶瓷及其微波介电性能[J]. 材料导报, 2019, 33(18): 3152-3155.
[3] 李光大, 张楠, 张开丽, 赵三团, 麻开旺, 许贺龙, 赵威, 谢蟪旭. 含钙铁氧体磁性生物活性玻璃陶瓷热种子的制备与表征[J]. 材料导报, 2018, 32(24): 4211-4216.
[4] 耿安东, 朱永昌, 崔竹, 张浩, 竹含真, 韩勖, 霍冀川. 不同晶核剂对硼硅酸盐钙钛锆石固化体析晶行为及化学稳定性的影响[J]. 材料导报, 2018, 32(22): 3979-3983.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed