Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23040199-11    https://doi.org/10.11896/cldb.23040199
  高分子与聚合物基复合材料 |
微/纳米级有机空心粒子构造及功能应用研究进展
张静, 高陈陈, 吴明明, 陈诚*
新疆大学特色纺织品与清洁染整技术重点实验室,乌鲁木齐 830017
Research Progress of Construction and Functional Application of Micro-Nanoscale Hollow Organic Particles
ZHANG Jing, GAO Chenchen, WU Mingming, CHEN Cheng*
Key Laboratory for Characteristic Textiles & Cleaner Dyeing and Finishing Technology, Xinjiang University, Urumqi 830017, China
下载:  全 文 ( PDF ) ( 12005KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着材料科学领域的不断发展,空心粒子因具有比表面积高、密度低、稳定性优异等诸多优势而在功能性材料中崭露头角,进而成为研究热点。本文首先介绍了空心粒子的基本类型,包括无机空心粒子、有机空心粒子,其中有机空心粒子因具有结构稳定、可修饰性强、易于调控、应用领域广等显著优势而备受学界关注。基于此,本文开展了对有机空心粒子的主要制备策略的论述,并对比分析了制备策略的优势及局限性;而后对微米级、纳米级以及微/纳多尺度结构有机空心粒子构造成形及形貌调控的研究进展进行了全面综述;最后,对微/纳米级有机空心粒子在药物载体、催化、传感、储能等领域的应用进展进行了细致阐述,并对其构造方式及发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张静
高陈陈
吴明明
陈诚
关键词:  空心粒子  有机  微/纳米级  调控  药物载体  催化  传感  储能    
Abstract: With the continuous development of materials science, hollow particles, on account of high specific surface area, low density, excellent stability and other advantages, have become a hot research topic in functional materials. In this review, we firstly introduce the basic types of hollow particles, including hollow inorganic particles, hollow organic particles. Nowadays, micro-nanoscale organic hollow particles have attracted much attention, due to their significant advantages, such like stable structure, strong modifier, easy regulation and wide application field. Based on above mentioned, the main preparation strategy of hollow organic particles is discussed in detail. Then, the research progress for the structure formation and morphology regulation, with regard to micro-scale, nano-scale and micro-nanoscale organic hollow particles, are elaborated. Finally, the application progress of micro-nanoscale organic hollow particles is expounded in drug carrier, catalysis, sensing, energy storage and other fields, and the construction method and development trend of micro-nanoscale organic hollow particles are prospected.
Key words:  hollow particle    organic    micro-nanoscale    regulate    drug carrier    catalysis    sensing    energy storage
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TQ9  
基金资助: 新疆维吾尔自治区重点研发任务专项项目(2022B01045-4);新疆维吾尔自治区天池博士计划科研启动项目(TCBS202011);新疆大学博士启动基金(BS210215)
通讯作者:  *陈诚,博士,现任新疆智能与绿色纺织重点实验室副主任,新疆大学纺织与服装学院副教授、硕士研究生导师,主要从事特殊润湿性微纳米材料受控构建的学术研究工作。目前,以第一作者或通信作者身份发表核心以上学术论文39篇,其中SCI收录论文14篇(中科院一区Top7篇)。主持或完成国家自然科学基金青年项目、新疆维吾尔自治区重点研发任务专项项目课题、教育部“春晖计划”合作科研项目、新疆维吾尔自治区自然科学基金等科研项目6项、人才项目1项、横向项目1项。450548205@qq.com   
作者简介:  张静,2022年6月于新疆大学获得工学学士学位。研究生在读,目前为新疆大学特色纺织品与清洁染整技术重点实验室成员,主要研究领域为聚合物基空心粒子可控构筑及多功能应用。
引用本文:    
张静, 高陈陈, 吴明明, 陈诚. 微/纳米级有机空心粒子构造及功能应用研究进展[J]. 材料导报, 2024, 38(21): 23040199-11.
ZHANG Jing, GAO Chenchen, WU Mingming, CHEN Cheng. Research Progress of Construction and Functional Application of Micro-Nanoscale Hollow Organic Particles. Materials Reports, 2024, 38(21): 23040199-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040199  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23040199
1 Wang Y B.Research on the construction of hollow materials by template method and its application. Master's Thesis, Dissertation of Shaanxi Normal University, China, 2017(in Chinese).
王延兵. 模板法构筑空心材料及其应用研究.硕士学位论文,陕西师范大学,2017.
2 Wang H, Pumera M. Chemical Reviews, 2015, 115(16), 8704.
3 Wichaita W, Polpanich D, Tangboriboonrat P. Industrial & Engineering Chemistry Research, 2019, 58(46), 20880.
4 Xie X C, Huang K J, Wu X. Journal of Materials Chemistry A, 2018, 6(16), 6754.
5 Xiao T, Kuang J, Pu H, et al. Journal of Alloys and Compounds, 2021, 862, 158032.
6 Li M, Gao Y, Jiang M, et al. Bioactive Materials, 2023, 26, 116.
7 Chattopadhyay J, Pathak T S, Pak D, et al. Molecules, 2016, 33, 1514.
8 Munkaila S, Dahal R, Kokayi M, et al. The Chemical Record, 2022, 22(8), e202200084.
9 Arias F J. International Journal of Heat and Mass Transfer, 2023, 209, 124111.
10 Lei Q, He F, Zhao X, et al. Macromolecular Rapid Communications, 2022, 43(5), 2100769.
11 Zhu W, Chen Z, Pan Y, et al. Advanced Materials, 2019, 31(38), 1800426.
12 Yang J, Zhang X, Li W, et al. Journal of the American Ceramic Society, 2023, 106(6), 3884.
13 Lei Q, He F, Zhao X, et al. Macromolecular Rapid Communications, 2022, 43(5), 2100769.
14 Xu Y, Wang T, He Z, et al. Polymer, 2018, 151, 92.
15 Omura T, Suzuki T, Minami H. Langmuir, 2021, 37(31), 9371.
16 Wang F, Liu J, Wang D, et al. Nanoscale, 2019, 11(32), 15017.
17 Huang P, Chen Y, Lin H, et al. Biomaterials, 2017, 125, 23.
18 Zhang S, Pelligra C I, Feng X, et al. Advanced Materials, 2018, 30(18), 1705794.
19 Celiker T, Suerkan A, Altinisik S, et al. Polymer Chemistry, 2021, 12(32), 4654.
20 Bracho-Sanchez E, Xia C Q, Clare-Salzler M J, et al. American Journal of Transplantation, 2016, 16(12), 3362.
21 Hu Y, Xia Q, Huang W, et al. Microchimica Acta, 2018, 185, 1.
22 Zhang S, Pelligra C I, Feng X, et al. Advanced Materials, 2018, 30(18), 1705794.
23 Halder A, Sun Y. Biosensors and Bioelectronics, 2019, 139, 111334.
24 Luo H, Wang S, Meng X, et al. Materials Chemistry Frontiers, 2023, 135, 26.
25 El-khatib A M, Elsafi M, Sayyed M I, et al. Results in Physics, 2021, 30, 104908.
26 Wei G, Wang L, Ding Z, et al. Journal of Colloid and Interface Science, 2023, 642, 648.
27 Park S H, Kim J, Hur S H, et al. Chemical Engineering Journal, 2018, 348, 46.
28 Kim G, Park K, Zheng Z, et al. Langmuir, 2020, 36(22), 6202.
29 Gao R, Guo Z, Zhou J, et al. Journal of Catalysis, 2020, 385, 103.
30 Hwang J, Kim S, Wiesner U, et al. Advanced Materials, 2018, 30(27), 1801127.
31 Kim H, Lah M S. Dalton Transactions, 2017, 46(19), 6146.
32 Kozhunova E, Ji Q, Hill J P, et al. Journal of Nanoscience and Nanotechnology, 2015, 15(3), 2389.
33 Cho K, Kang C W, Ryu S H, et al. Journal of Materials Chemistry A, 2022, 10(13), 6950.
34 Wichaita W, Polpanich D, Kaewsaneha C, et al. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110557.
35 Komamura T, Okuhara K, Horiuchi S, et al. ACS Applied Polymer Materials, 2019, 1(5), 1209.
36 Koshino M, Shiraishi Y, Atobe M. Ultrasonics Sonochemistry, 2019, 54, 250.
37 Du Y, Gao J, Zhou L, et al. Advanced Science, 2019, 6(6), 1801684.
38 Wang Y, He X. RSC Advances, 2018, 8(24), 13526.
39 Kazemi-Andalib F, Mohammadikish M, Divsalar A, et al. European Polymer Journal, 2022, 162, 110887.
40 Jiang X, Cao H, Zhang L, et al. Polymer, 2021, 228, 123946.
41 Zhang Z, Cheng M, San G M, et al. Journal of Colloid and Interface Science, 2019, 555, 489.
42 Yang X, Zhang J, Chen R. Applied Chemical Industry,2021, 50(10), 2877 (in Chinese).
杨旭, 张静, 陈蕊. 应用化工, 2021, 50(10), 2877.
43 Ji J, Deng C, Liu X, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591, 124537.
44 Weng W, Lin J, Du Y, et al. Journal of Materials Chemistry A, 2018, 6(22), 10168.
45 Qiao Y, Li Q, Li Q, et al. Composites Communication, 2022, 33, 101197.
46 Wichaita W, Polpanich D, Kaewsaneha C, et al. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110557.
47 Matsuura T, Maruyama T. Colloid and Polymer Science, 2017, 295(7), 1251.
48 Ai K, Li Z, Li W, et al. Particle & Particle Systems Characterization, 2018, 35(10), 1800266.
49 Munkaila S, Dahal R, Kokayi M, et al. The Chemical Record, 2022, 22(8), e202200084.
50 Lv H, Sun L, Lopes A, et al. The Journal of Physical Chemistry Letters, 2019, 10(18), 5490.
51 Nonappa J S, Haataja J V I, Timonen S M P, et al. Angewandte Chemie International Edition, 2017, 56, 6473.
52 Wang J, Liu H. RSC Advances, 2016, 6(3), 2374.
53 Seydibeyoğlu M Ö, Dogru A, Wang J, et al. Polymers, 2023, 15(4), 984.
54 Celiker T, Suerkan A, Altinisik S, et al. Polymer Chemistry, 2021, 12(32), 4654.
55 Bracho-Sanchez E, Xia C Q, Clare-Salzler M J, et al. American Journal of Transplantation, 2016, 16(12), 3362.
56 Hu Y, Xia Q, Huang W, et al. Microchimica Acta, 2018, 185, 1.
57 Zhou J, Zhao H, Wang J, et al. Materials Chemistry and Physics, 2016, 181, 150.
58 Minami H, Kojima A, Suzuki T. Langmuir, 2017, 33(6), 1541.
59 Chen Y, Lu Z, Liu Q. Journal of Membrane Science, 2019, 592, 117384.
60 Watanabe T, Yamamoto E, Uchida S, et al. Langmuir, 2020, 36(46), 13833.
61 Liu W, Ma N, Li S, et al. Journal of Materials Science, 2017, 52, 2868.
62 Xu J Q, Chen Z, Ren D, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 592, 124579.
63 Feng L, Zhang Y, Xi J, et al. Langmuir, 2008, 24(8), 4114.
64 Yin Y, Liu M, Wei W, et al. Particle & Particle Systems Characterization, 2018, 35(12), 1800323.
65 Wang J, Pan M, Yuan J, et al. ACS Applied Materials & Interfaces, 2021, 13(12), 14669.
66 Matsubayashi T, Tenjimbayashi M, Manabe K, et al. RSC Advances, 2016, 6(19), 15877.
67 Li B, Luo W, Wang Y, et al. Journal of Non-Crystalline Solids, 2016, 447, 98.
68 Ziarani G M, Malmir M, Lashgari N, et al. RSC Advances, 2019, 9(43), 25094.
69 Fu Y, Li Y, Li G, et al. Biomacromolecules, 2017, 18(7), 2195.
70 Song W, Zhang Y, Yu D G, et al. Biomacromolecules, 2020, 22(2), 732.
71 Fujii S, Kozuka S, Yokota K, et al. Langmuir, 2022, 38(18), 5812.
72 Xiao J, Cheng K, Xie X, et al. Nature Materials, 2022, 21(5), 572.
73 Yu X H, Yi J L, Zhang R L, et al. Frontiers of Chemical Science and Engineering, 2021, 15, 1380.
74 Choi S J, Choi E H, Song C, et al. ACS Macro Letters, 2019, 8(6), 687.
75 Yan Z, Xie G, Zhang J, et al. Molecular Catalysis, 2019, 464, 39.
76 Huang Y, Zhang X R, Ye S, et al. Nanoscale, 2019, 11(28), 13502.
77 Ryu S H, Lee D H, Lee S M, et al. Chemical Communications, 2019, 55(64), 9515.
78 Park N, Ko K C, Shin H W, et al. Journal of Materials Chemistry A, 2016, 4(21), 8010.
79 Abid A, Razzaque S, Hussain I, et al. Macromolecules, 2021, 54(12), 5848.
80 Zhang Y T, Yang Z H, Dou Y, et al. Chemical Engineering Journal, 2022, 442,136155.
81 Choi J, Ko J H, Kang C W, et al. Journal of Materials Chemistry A, 2018, 6(15), 6233.
82 Li Y, Qin Y, Zhao J, et al. ACS Applied Materials & Interfaces, 2022, 14(16), 18360.
[1] 钮政, 罗希, 徐能能, 陈刚, 乔锦丽. 聚乙烯醇基凝胶电解质的制备及在储能器件中的应用[J]. 材料导报, 2024, 38(8): 23040146-11.
[2] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[3] 孙亚洲, 徐沙, 邹金含, 吴智华, 谢顺吉. 二氧化碳电催化还原酸性体系研究进展[J]. 材料导报, 2024, 38(8): 23040216-6.
[4] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[5] 赵涔凯, 邹杰鑫, 王旻, 李思明, 赵微, 张时林, 滕珏瑾, 王艳皎, 吴明铂, 胡涵, 李亚伟. 基于阴离子交换膜电解水的离聚物研究进展[J]. 材料导报, 2024, 38(8): 23080132-11.
[6] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[7] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[8] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[9] 苗珊珊, 王业健, 李澄, 钱淇, 徐国跃. 基于同色同谱特征的模拟绿色植被光谱材料研究进展[J]. 材料导报, 2024, 38(7): 22080054-7.
[10] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[11] 张霞, 吴瑛, 袁牧锋, 王春栋. MOFs衍生物在尿素氧化中的研究进展[J]. 材料导报, 2024, 38(6): 23020193-10.
[12] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[13] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[14] 苏秉尧, 王斌, 侯林伟, 王恒, 赵建伟, 贺辛亥, 袁亚蓉. 柔性碳/三聚氰胺复合泡沫的电磁屏蔽与传感特性[J]. 材料导报, 2024, 38(5): 22070159-7.
[15] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed