Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23030276-10    https://doi.org/10.11896/cldb.23030276
  金属与金属基复合材料 |
铝合金超疏水表面制备方法及防腐应用研究现状
李雪伍*, 杜少盟, 闫佳洋, 石甜
西安科技大学机械工程学院,西安 710054
Research Status of Preparation Methods and Anticorrosive Application of Aluminum Alloy Superhydrophobic Surfaces
LI Xuewu*, DU Shaomeng, YAN Jiayang, SHI Tian
School of Mechanical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
下载:  全 文 ( PDF ) ( 20282KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 受“荷叶效应”为代表的超疏水现象启发,几十年来,超疏水材料制备技术发展迅猛。铝合金有良好的铸造与塑性加工性能,是工业应用极广泛的材料之一,海洋、航空等特殊应用领域对铝合金表面性能提出更高要求,而超疏水材料具有耐腐蚀、自清洁、抗污染、防覆冰等优良特性。因此,对铝合金进行超疏水表面构筑,进一步提高其耐腐蚀性能具有重要现实意义。本文梳理了润湿性经典理论,然后对铝合金超疏水表面制备过程进行综述,接着对铝合金超疏水表面制备方法进行归纳,包含刻蚀法、电沉积法、氧化法及水热法等,在此基础上讨论了铝合金超疏水表面抗腐蚀机理及在耐腐蚀领域应用现状,最后提出铝合金超疏水表面从实验研究到实际生产应用过程所面临的现实问题,并提出系统建议与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雪伍
杜少盟
闫佳洋
石甜
关键词:  超疏水  铝合金  制备工艺  耐腐蚀机理  低表面能    
Abstract: Inspired by the superhydrophobic phenomenon represented by the ‘lotus leaf effect', the technology of superhydrophobic material preparation has been developing rapidly for decades. Aluminum alloy has good casting and plastic processing properties, and is one of the most widely used materials in industrial applications. The performance of aluminum alloy surfaces in specific fields, such as marine and aviation, has higher requirements, and superhydrophobic surfaces have excellent characteristics such as corrosion resistance, self-cleaning ability, frost resistance. Therefore, it is of practical significance to construct superhydrophobic surfaces for aluminum alloys to further improve their corrosion resistance. In this paper, the classical theory of wettability is first reviewed, then the process of preparing the superhydrophobic surface of aluminum alloy is briefly introduced, then many methods of preparing the superhydrophobic surface of aluminum alloy are summarized and reviewed, including etching, electrodeposition, oxidation, and hydrothermal methods, etc. On this basis, the corrosion resistance mechanism of the superhydrophobic surface of aluminum alloy and its application in the field of corrosion resistance are discussed and studied, and the superhydrophobic surface of aluminum alloy is proposed. Finally, the practical problems faced by aluminum alloy superhydrophobic surfaces from experimental research to practical production applications are proposed, and systematic suggestions and prospects are proposed.
Key words:  superhydrophobic    aluminum alloy    preparation process    corrosion resistance mechanism    low surface energy
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TG146.2  
  TB37  
基金资助: 国家自然科学基金(52275211);陕西省创新能力支撑计划科技新星项目(2021KJXX-38);中国博士后科学基金项目(2021M693883)
通讯作者:  *李雪伍,通信作者,西安科技大学教授、博士研究生导师,功能材料特种加工研究所所长,陕西省高层次青年人才计划入选者,陕西省青年科技新星,中国发明创业创新奖获得者。主要从事表面工程与摩擦学、涂层表界面行为调控与应用研究,主持国家自然科学基金面上、青年及其他省部级科研课题10余项,获省级科学技术二等奖3项(2项排序1)、西安市自然科学优秀学术论文奖、中国机械工程学会最佳论文奖及中国建材优秀博士奖。在Journal of Magnesium and Alloys、Carbon、Applied Surface Science、Materials & Design等期刊发表SCI检索论文50余篇,其中ESI Hot Paper(前0.1%)及ESI Highly Cited Paper(前1%)7篇。申请国家发明专利10余项,授权5项。lixuewu55@126.com   
引用本文:    
李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
LI Xuewu, DU Shaomeng, YAN Jiayang, SHI Tian. Research Status of Preparation Methods and Anticorrosive Application of Aluminum Alloy Superhydrophobic Surfaces. Materials Reports, 2024, 38(19): 23030276-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030276  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23030276
1 Zheng B Y, Di Y L, Wang H D, et al. Materials Reports, 2020, 34(23), 23109 (in Chinese).
郑博源, 底月兰, 王海斗, 等. 材料导报, 2020, 34(23), 23109.
2 Cao Y J, Wang C, Wang L Q. Materials Reports, 2020, 34(3), 184 (in Chinese).
曹颐戬, 王聪, 王丽琴. 材料导报, 2020, 34(3), 184.
3 Li X W. Preparation and performance research of micro-nano structures on 5052 Al alloy surface. Ph. D. Thesis, Wuhan University of Technology, China, 2017 (in Chinese).
李雪伍. 5052铝合金表面微纳结构的制备与性能研究. 博士学位论文, 武汉理工大学, 2017.
4 Ma L, Zhao H, Gui Y N, et al. Materials Reports, 2021, 35(S1), 414 (in Chinese).
马力, 赵赫, 昝宇宁, 等. 材料导报, 2021, 35(S1), 414.
5 Wang H F, Yang B Q, Liu G, et al. Materials Reports, 2018, 32(S1), 395 (in Chinese).
王惠芬, 杨碧琦, 刘刚. 材料导报, 2018, 32(S1), 395.
6 Zhang B, Xu W, Zhu Q, et al. Materials, 2019, 12(10), 1592.
7 Jia C, Zhu J, Zhang L. Materials, 2022, 15(5), 1939.
8 Saji V S. Journal of Adhesion Science and Technology, 2022, 37(2), 137.
9 Zhao M R, Zhou H Y, Kang W Q, et al. Acta Materiae Compositae Sinica, 2021, 38(2), 361 (in Chinese).
赵美蓉, 周惠言, 康文倩, 等. 复合材料学报, 2021, 38(2), 361.
10 Young T. Philosophical Transactions of the Royal Society of London, 1805 (95), 65.
11 Wenzel R N. Industrial & Engineering Chemistry, 1936, 28(8), 988.
12 Cassie A B D, Baxter S. Transactions of the Faraday Society, 1944, 40, 546.
13 Barthlott W, Neinhuis C. Planta, 1997, 202(1), 1.
14 Liu J, Fang X, Zhu C, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125498.
15 Li X W, Wang H X, Shi T, et al. Rare Metal Materials and Engineering, 2022, 51(1), 6.
16 Pan G, Huang Q G, Hu H B, et al. Materials Reports, 2009, 23(21), 64 (in Chinese).
潘光, 黄桥高, 胡海豹, 等. 材料导报, 2009, 23(21), 64.
17 Xu N, Sarkar D K, Chen X G, et al. Surface and Coatings Technology, 2016, 302, 173.
18 Xu N, Sarkar D K, Chen X G, et al. RSC Advances, 2016, 6(42), 35466.
19 Ge-Zhang S, Yang H, Ni H, et al. Frontiers in Bioengineering and Biotechnology, 2022, 10, 958095.
20 Sun R, Zhao J, Li Z, et al. Progress in Organic Coatings, 2020, 147, 105745.
21 Cui C, Cao Y, Qi B, et al. Langmuir, 2021, 37(25), 7810.
22 Peng H, Li L, Wang Q, et al. Journal of Coatings Technology and Research, 2021, 18(3), 861.
23 Liu M, Li M T, Xu S, et al. Frontiers in Chemistry, 2020, 8, 835.
24 Lian Z, Xu J, Yu Z, et al. Journal of Alloys and Compounds, 2019, 793, 326.
25 Lian Z, Xu J, Yu P, et al. Metals and Materials International, 2020, 26(11), 1603.
26 Tong W, Cui L, Qiu R, et al. Journal of Materials Science & Technology, 2021, 89, 59.
27 Xin G, Wu C, Liu W, et al. Journal of Alloys and Compounds, 2021, 881, 160649.
28 Guo Y, Zhang X, Wang X, et al. Journal of Materials Science, 2020, 55(25), 11658.
29 Ijaola A O, Bamidele E A, Akisin C J, et al. Surfaces and Interfaces, 2020, 21, 100802.
30 Volpe A, Gaudiuso C, Ancona A. Materials, 2020, 13(24), 5692.
31 Liu J, Fang X, Zhu C, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125498.
32 Zhao Q, Tang T, Wang F. Coatings, 2018, 8(11), 390.
33 Zhang D, Li L, Wu Y, et al. Applied Surface Science, 2019, 473, 493.
34 Zhao Y, Xu J B, Zhan J, et al. Applied Surface Science, 2020, 508, 145242.
35 Li X, Yin S, Luo H. Vacuum, 2020, 181, 109674.
36 He Z, Zeng Y, Zhou M, et al. Langmuir, 2020, 37(1), 524.
37 Saji V S. Advances in Colloid and Interface Science, 2020, 283, 102245.
38 Zhang X, Wang R, Long F, et al. Corrosion Science, 2021, 193, 109889.
39 Li L, Li T, Zhang Z, et al. Journal of Coatings Technology and Research, 2022, 19(5), 1449.
40 Huang J, Zhao D, Gong Y, et al. Surface and Coatings Technology, 2022, 441, 128566.
41 Yu P H, Zuo Y, Zhu X B, et al. Rare Metals, 2019 , 43(1), 67 (in Chinese).
于佩航, 左佑, 朱鑫彬, 等. 稀有金属, 2019, 43(1), 67.
42 Egorkin V S, Mashtalyar D V, Gnedenkov A S, et al. Polymers, 2021, 13(21), 3827.
43 Saji V S. Journal of Adhesion Science and Technology, 2023, 37(2), 137.
44 Bi P, Li H, Zhao G, et al. Coatings, 2019, 9(7), 452.
45 Jin Q, Tian G, Li J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 8.
46 Chen X H, Chen M J, Min Y L, et al. Electrochemistry, 2018, 24(1), 28 (in Chinese).
陈晓航, 陈寞静, 闵宇霖, 等. 电化学, 2018, 24(1), 28.
47 Zhu G, Zhao Y, Liu L, et al. Journal of Materials Science, 2021, 56(26), 14803.
48 Peng H, Yang H, Ma X, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643, 128800.
49 Tuo Y J, Chen W P, Zhang H F, et al. Applied Surface Science, 2018, 46, 230.
50 Feng L, Zhang H, Wang Z, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 319.
51 Zhang Z, Xue F, Bai W, et al. Surface and Coatings Technology, 2021, 410, 126952.
52 Calabrese L, Khaskhoussi A, Patane S, et al. Coatings, 2019, 9(6), 352.
53 Li L, Lin Y, Rabbi K F, et al. ACS Applied Materials & Interfaces, 2021, 13(36), 43489.
54 Shi T, Guo X Z, Yang H. Rare Metal Materials and Engineering, 2008, 37(s2), 73 (in Chinese).
石涛, 郭兴忠, 杨辉. 稀有金属材料与工程, 2008, 37(s2), 73.
55 Wang Z L, Li X Y, Song H P, et al. Materials Sciences and Technology, 2023, 31(2), 83(in Chinese).
王兆林, 李香云, 宋海鹏, 等. 材料科学与工艺, 2023, 31(2), 83.
56 Rivero P J, Rosagaray I, Fuertes J P, et al. Polymers, 2020, 12(9), 2086.
57 Rivero P J, Iribarren A, Larumbe S, et al. Coatings, 2019, 9(6), 367.
58 Iribarren A, Rivero P J, Berlanga C, et al. Coatings, 2019, 9(4), 216.
59 Ellinas K, Dimitrakellis P, Sarkiris P, et al. Processes, 2021, 9(4), 666.
60 Lee J W, Hwang W. Materials Letters, 2016, 168, 83.
61 Zhu G, Liu E, Liu L, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127977.
62 Kozhukhova A E, Du Preez S P, Bessarabov D G. Surface and Coatings Technology, 2020, 383, 125234.
63 Hou R H, Wang H, Chen J, et al. Chemical Industry and Engineering Progress, 2016, 35(8), 2523 (in Chinese).
侯蕊红, 王皓, 陈津, 等. 化工进展, 2016, 35(8), 2523.
64 Li J, Liu J, Cao Y, et al. Materials Chemistry and Physics, 2022, 287, 126313.
65 Du X Q, Liu Y W, Chen Y. Applied Physics A, 2021, 127(8), 1.
66 Li X W, Yan J Y, Yu T, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128701.
67 Oh J W, Jung J Y, Song K, et al. Journal of Mechanical Science and Technology, 2019, 33(8), 3971.
68 Zhang X, Gong A, Zheng Y, et al. Physica Status Solidi A-Applications and Materials Science, 2022, 219(22), 2200301.
69 Wen Y, Li J, Wang Q, et al. Advanced Materials Interfaces, 2021, 8(14), 2100383.
70 Li J, Li J, Liu Y, et al. Advanced Engineering Materials, 2021, 23(6), 2001540.
71 Xia X J, Cai J B, Lin D Y, et al. Natural Science of Hunan Normal University, 2020, 43(5), 57 (in Chinese).
夏晓健, 蔡建宾, 林德源, 等. 湖南师范大学自然科学学报, 2020, 43(5), 57.
72 Shi T, Li X W, Zhang C W, et al. Materials and Corrosion, 2021, 72(5), 904.
73 An L T, Pei D M, Sun C Q, et al. Pearl River Water Transport, 2020(10), 5 (in Chinese).
安连彤, 裴冬梅, 孙成琪, 等. 珠江水运, 2020(10), 5.
74 Hu Y G, Dong R F, Zhang X Y, et al. Jiangxi Metallurgy, 2023, 43(1), 39(in Chinese).
胡永刚, 董瑞峰, 张肖雨, 等. 江西冶金, 2023, 43(1), 39.
75 Wei D, Wang J, Wang H, et al. Applied Surface Science, 2019, 483, 1017.
76 Tong W, Karthik N, Li J, et al. Langmuir, 2019, 35(47), 15078.
[1] 位振, 戴飞, 何强. 多级结构超疏水表面的制备与性能分析[J]. 材料导报, 2024, 38(9): 22100133-5.
[2] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[3] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[4] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[5] 张京京, 易幼平, 黄始全, 何海林, 董非, 王当. 2195铝合金中温变形条件下的静态再结晶机理及动力学[J]. 材料导报, 2024, 38(4): 22040369-9.
[6] 黄勇, 李俊越, 张栋葛, 韩津春, 郁崇文, 俞建勇, 丁彬, 李召岭. 化纤织物疏水疏油功能整理的发展概况[J]. 材料导报, 2024, 38(4): 22090167-14.
[7] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[8] 朱飞, 杨雪, 苏静, 王鸿博. 酶促咖啡酸制备超疏水棉织物及其油水分离应用[J]. 材料导报, 2024, 38(3): 22100129-7.
[9] 黄玺, 张亮, 王曦, 陈晨, 卢晓. 电子封装用纳米级无铅钎料的研究进展[J]. 材料导报, 2024, 38(23): 23080181-13.
[10] 李承刚, 吴石莲, 常国华, 关润泽, 周炳见, 杨彤, 杨宇. 光伏应用超疏水自清洁涂层材料的研究进展[J]. 材料导报, 2024, 38(23): 23080075-12.
[11] 张彪, 刘家招, 杨鑫三, 孙宇萱. 基于XFEM的汽车铝合金断裂行为表征[J]. 材料导报, 2024, 38(19): 22100262-5.
[12] 蔡佳思, 刘湘波, 王新元, 魏艳红. 强制流动下铝铜合金激光焊接熔池凝固过程组织演化模拟[J]. 材料导报, 2024, 38(19): 23060085-7.
[13] 罗广瑞, 吴子彬, 长海博文, 翁文凭, 王东涛, 李一峰, 毛志福, 董鑫, 冯志鑫, 陈希, 张海涛, 朱慧颖, 张波. 车用铝合金弯曲成形回弹行为研究进展[J]. 材料导报, 2024, 38(18): 23030082-10.
[14] 邱飒蔚, 雷贝, 叶拓, 张越, 蒋家传, 王涛. 铝合金自冲铆疲劳性能及寿命预测[J]. 材料导报, 2024, 38(18): 24030108-7.
[15] 刘书俊, 肖文龙, 杨昌一, 吴舒凡. 激光粉末床熔融增材制造耐热铝合金的研究进展[J]. 材料导报, 2024, 38(18): 24080026-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed