Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 22070247-8    https://doi.org/10.11896/cldb.22070247
  无机非金属及其复合材料 |
碱渣-电石渣激发混凝土的基本力学性能与应力-应变关系
郭维超1,2, 赵庆新1,2,*, 邱永祥2,3, 石雨轩2,3, 王帅2,3
1 燕山大学亚稳材料制备技术与科学国家重点实验室,河北 秦皇岛 066000
2 燕山大学城市固废无害化协同处置及利用河北省工程研究中心,河北 秦皇岛 066000
3 燕山大学河北省土木工程绿色建造与智能运维重点实验室,河北 秦皇岛 066000
Basic Mechanical Properties and Stress-Strain Relationship of Soda Residue Calcium Carbide Slag Activated Concrete
GUO Weichao1,2, ZHAO Qingxin1,2,*, QIU Yongxiang2,3, SHI Yuxuan2,3, WANG Shuai2,3
1 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066000, Hebei, China
2 Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao 066000, Hebei, China
3 Key Laboratory of Green Construction and Intelligent Maintenance for Civil Engineering of Hebei Province, Yanshan University, Qinhuangdao 066000, Hebei, China
下载:  全 文 ( PDF ) ( 6487KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碱渣、电石渣等碱性工业固废的大面积堆置引发了严重的环境污染问题,亟需拓展资源化利用渠道。本工作以先前开发的碱渣-电石渣协同激发矿渣-粉煤灰胶凝材料替代水泥制备了新型混凝土,研究了其抗压、抗拉、抗折等基本力学性能与单轴受压应力-应变关系。结果表明:新型混凝土的早期抗压强度相比水泥混凝土发展缓慢,可通过适宜的热养护(60~75 ℃@12 h)进行改善,且对后期强度不会产生不利影响。新型混凝土拉压比和折压比分别为0.102±0.006、0.137±0.007,均高于同等级的水泥混凝土。新型混凝土在单轴受压下具有比水泥混凝土更短的弹性上升段,更长的塑性上升段,峰值应力后延性略差。通过统计回归分别建立了标准抗压、轴心抗压、劈裂抗拉、抗折强度的预测模型以及单轴受压应力-应变关系,均与试验值吻合性较好,为这类新型混凝土的配合比设计、强度预测及工程应用奠定了理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭维超
赵庆新
邱永祥
石雨轩
王帅
关键词:  碱渣  电石渣  混凝土  力学性能  应力-应变关系    
Abstract: The large-scale stacking of alkaline industrial solid wastes such as soda residue (SR) and calcium carbide slag (CS) has caused serious environmental pollution problems, which is urgent to expand the channels of resource utilization. A new type of concrete (SCB-based concrete, SCBC) was prepared by using the previously developed SR-CS synergistically activated blast furnace slag-fly ash binder (SCB) instead of cement. Its basic mechanical properties such as compression, tensile and flexural properties, and uniaxial compressive constitutive relationship were studied. The results showed that the early compressive strength of SCBC was slower than that of Portland cement concrete (PCC), which could be improved by appropriate heat curing (60—75 ℃@12 h), and would not have an adverse impact on the later strength. The tension-compression ratio and flexural-compression ratio were 0.102±0.006 and 0.137±0.007, respectively, which were higher than that of PCC with the same grade. SCBC had a shorter elastic rising segment and longer plastic rising segment than PCC under uniaxial compression, and exhibited stronger brittleness after peak stress. The prediction models of standard compressive, axial compressive, split tensile, and flexural strength, as well as the uniaxial compressive stress-strain relationship, were established through statistical regression, which were in good agreement with the experimental values, and laid a theoretical foundation for the mix proportion design, strength prediction and engineering application of SCBC.
Key words:  soda residue    calcium carbide slag    concrete    mechanical property    stress-strain relationship
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TU528  
基金资助: 河北省自然科学基金(E2023203172); 国家自然科学基金(52078450); 河北省重点研发计划项目(19211505D)
通讯作者:  *赵庆新,燕山大学建筑工程与力学学院教授、博士研究生导师。1996年哈尔滨建筑大学无机非金属材料专业本科毕业,2007年东南大学材料学专业博士毕业。目前主要从事工业固废资源化利用、混凝土材料与结构耐久性、多组分混凝土徐变机理等方面的研究工作。在Cement and Concrete Research,Construction and Building Materials、《硅酸盐学报》《土木工程学报》等期刊发表论文100余篇,授权发明专利20余项。zhaoqingxin@ysu.edu.cn   
作者简介:  郭维超,2013年7月、2022年6月于燕山大学分别获得工学学士学位和博士学位。现为燕山大学建筑工程与力学学院教师,主要从事工业固废建材化应用与性能调控、混凝土材料力学行为与损伤失效机理方面的研究,在Construction and Building Materials、Journal of Building Engineering、《岩土工程学报》等期刊发表学术论文12篇,授权发明专利8项(含国际专利1项)。
引用本文:    
郭维超, 赵庆新, 邱永祥, 石雨轩, 王帅. 碱渣-电石渣激发混凝土的基本力学性能与应力-应变关系[J]. 材料导报, 2024, 38(17): 22070247-8.
GUO Weichao, ZHAO Qingxin, QIU Yongxiang, SHI Yuxuan, WANG Shuai. Basic Mechanical Properties and Stress-Strain Relationship of Soda Residue Calcium Carbide Slag Activated Concrete. Materials Reports, 2024, 38(17): 22070247-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070247  或          http://www.mater-rep.com/CN/Y2024/V38/I17/22070247
1 Provis J L, Palomo A, Shi C. Cement and Concrete Research, 2015, 78, 110.
2 Wang Y B, Yuan Y, Zhao R D, et al. Materials Reports, 2020, 34(15), 15102 (in Chinese).
王永宝, 原元, 赵人达, 等. 材料导报, 2020, 34(15), 15102.
3 Zhang P, Wang K, Li Q, et al. Journal of Cleaner Production, 2020, 258, 120896.
4 Ding Y, Dai J, Shi C. Construction and Building Materials, 2016, 127, 68.
5 Wan X M, Zhang Y, Zhao T J, et al. Materials Reports, 2018, 32(12), 2091 (in Chinese).
万小梅, 张宇, 赵铁军, 等. 材料导报, 2018, 32(12), 2091.
6 Tong G Q, Zhang W Y, Gao Y T, et al. Materials Reports, 2022, 36(4), 129 (in Chinese).
童国庆, 张吾渝, 高义婷, 等. 材料导报, 2022, 36(4), 129.
7 Zhao X, Liu C, Zuo L, et al. Journal of Cleaner Production, 2020, 260, 121045.
8 Meng J, Zhong L, Wang L, et al. Environmental Science and Pollution Research, 2018, 25, 8827.
9 Liu J, Zhao Q, Zhang J, et al. Journal of Building Materials, 2019, 22(6), 872 (in Chinese).
刘继中, 赵庆新, 张津瑞, 等. 建筑材料学报, 2019, 22(6), 872.
10 Lin Y H, Xu D Q, Zhao X H. Bulletin of the Chinese Ceramic Society, 2019, 38(9), 2876 (in Chinese).
林永会, 徐东强, 赵献辉. 硅酸盐通报, 2019, 38(9), 2876.
11 Li W, Yi Y. Construction and Building Materials, 2020, 238, 117713.
12 Zhang J, Tan H, He X, et al. Construction and Building Materials, 2020, 249, 118763.
13 Zhao X, Liu C, Wang L, et al. Cement and Concrete Composites, 2019, 98, 125.
14 Hanjitsuwan S, Phoo-ngernkham T, Li L Y, et al. Construction and Building Materials, 2018, 162, 714.
15 Guo W, Zhang Z, Bai Y, et al. Construction and Building Materials, 2021, 291, 123367.
16 Guo W, Wang S, Xu Z, et al. Construction and Building Materials, 2021, 302, 124403.
17 Sofi M, Deventer J, Mendis P A, et al. Cement and Concrete Research, 2007, 37, 251.
18 Ibrahim M, Johari M, Rahman M K, et al. Construction and Building Materials, 2018, 189, 352.
19 Diaz-loya E I, Allouche E N, Vaidya S. ACI Materials Journal, 2011, 108, 300.
20 Dhevaraju L, Reddy E A, Dogiparthy N D, et al. In:the 3rd National Conference on Structural Engineering and Construction Management (SECON), Angamaly, 2019, pp.139.
21 Pan Z, Sanjayan J G, Rangan B V. Magazine of Concrete Research, 2011, 63, 763.
22 Guo Z H. Strength and constitutive relationship of concrete-principle and application, China Architecture & Building Press, China, 2004, pp.35 (in Chinese).
过镇海. 混凝土的强度和本构关系-原理与应用, 中国建筑工业出版社, 2004, pp.35.
[1] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[2] 闫凯, 张倩, 黄彬超, 张鑫. 火灾下活性粉末混凝土梁斜截面承载性能研究[J]. 材料导报, 2024, 38(9): 22110018-8.
[3] 陈爽, 韦丽兰, 陈红梅, 关纪文. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能[J]. 材料导报, 2024, 38(9): 22110088-10.
[4] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[5] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[6] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[7] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[8] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[9] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[10] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[11] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[12] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[13] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[14] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[15] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed