Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23100177-12    https://doi.org/10.11896/cldb.23100177
  先进有色金属材料加工及性能调控 |
TiAl金属间化合物定向技术研究进展
马云路1, 杨劼人1,*, 刘泽栋1, 陈瑞润2
1 四川大学材料科学与工程学院,成都 610065
2 哈尔滨工业大学金属精密热加工国家重点实验室,哈尔滨 150001
Advancement in Directional Technology of TiAl Intermetallic Compounds
MA Yunlu1, YANG Jieren1,*, LIU Zedong1, CHEN Ruirun2
1 College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
2 National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China
下载:  全 文 ( PDF ) ( 30923KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 TiAl合金具有低密度和良好的高温性能,被视为航空航天领域极具应用潜力的一类新型结构材料。具有柱晶/单晶组织特征的全片层结构TiAl合金展现出极为优异的高温综合力学性能。本文首先介绍了定向TiAl合金的发展背景、定向组织、力学性能各向异性等基本概念;然后,基于工作原理、关键技术、组织特征三个层面,对传统Bridgman法、光学浮区法、电磁约束以及电磁冷坩埚等定向技术进行了论述;进一步,结合最新研究成果,对定向退火制备TiAl合金的工作进行了阐述;最后,展望了TiAl合金定向技术的研究方向,指出需要从优化成分设计、组织/相变可控、大尺度定向晶稳定制备等方面发展新原理与新技术。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马云路
杨劼人
刘泽栋
陈瑞润
关键词:  TiAl合金  定向凝固  定向退火  柱晶/单晶  力学性能  高温结构材料    
Abstract: TiAl alloys with low density and good high-temperature properties, are regarded as a new type of structural material with great application potential in the aerospace field. The fully lamellar TiAl alloy with columnar/single crystal structure exhibits excellent comprehensive mechanical properties at high temperatures. This paper first introduces the basic concepts of directional TiAl alloys, such as development background, directional structure, and mechanical property anisotropy. Then, based on the three aspects including working principle, key technology, and structural characteristics, the directional technologies such as traditional Bridgman method, optical floating zone method, electromagnetic constraint, and electromagnetic cold crucible are discussed. Furthermore, combined with the latest research results, the work of preparing TiAl alloys by directional annealing is elaborated. Finally, the research direction of directional technology in TiAl alloys is prospected, and it is pointed out that new principles and technologies need to be developed in terms of optimizing composition design, controlling microstructure/phase transformation, and stably producing large-scale directional crystals.
Key words:  TiAl alloy    directional solidification    directional annealing    columnar grains/single crystals    mechanical property    high-temperature structural material
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  TG146.23  
基金资助: 国家自然科学基金(52074229;52371035);四川省重点研发计划(SC2022A1C01J;23ZDYF0546)
通讯作者:  * 杨劼人,四川大学材料科学与工程学院特聘研究员、博士研究生导师,2013年获哈尔滨工业大学材料加工工程博士学位。中组部高层次人才特殊支持计划入选者(QB),四川省天府峨眉计划青年人才,四川大学双百计划人才,中国机械工程学会特种铸造及有色合金技术委员会委员,全国“稀有青年”。主要从事高温金属结构材料设计、相变理论、结构-性能调控及特种凝固加工方向研究,主持国家级科研项目6项、省部级项目10余项,以第一/通信作者发表SCI论文50余篇,授权发明专利20项,出版专著《航空航天材料定向凝固》。yangjieren@scu.edu.cn   
作者简介:  马云路,2022年6月于西北工业大学获得工学学士学位。现为四川大学材料科学与工程学院硕士研究生,导师为杨劼人特聘研究员。目前主要研究领域为TiAl合金定向晶可控制备及高温性能评价。
引用本文:    
马云路, 杨劼人, 刘泽栋, 陈瑞润. TiAl金属间化合物定向技术研究进展[J]. 材料导报, 2024, 38(15): 23100177-12.
MA Yunlu, YANG Jieren, LIU Zedong, CHEN Ruirun. Advancement in Directional Technology of TiAl Intermetallic Compounds. Materials Reports, 2024, 38(15): 23100177-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100177  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23100177
1 Chen G, Peng Y, Zheng G, et al. Nature Materials, 2016, 15(8), 876.
2 Zhao X Y, Chen R R, Yang Y, et al. Rare Metals, 2023, 42(6), 2047.
3 He T, Hu R, Yang J R, et al. Rare Metals, 2023, 42(1), 288.
4 Johnson D R, Inui H, Yamaguchi M. Acta Materialia, 1996, 44(6), 2523.
5 Ding X F, Zhang L Q, Lin J P, et al. Transactions of Nonferrous Metals Society of China, 2012, 22(4), 747.
6 Lapin J, Gabalcova Z. Intermetallics, 2011, 19(6), 797.
7 Ding X F, Lin J P, He J P, et al. Rare Metals, 2010, 29(3), 292.
8 Cheng T, Mitchell A, Beddoes J, et al. High Temperature Materials and Processes, 2000, 19(2), 79.
9 Inui H, Oh M H, Nakamura A, et al. Acta Metallurgica Et Materialia, 1992, 40(11), 3095.
10 Johnson D R, Masuda Y, Inui H, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 1997, 240, 577.
11 Yue X A, Shen J, Wang L, et al. Journal of Alloys and Compounds, 2022, 25, 891.
12 Wang Y Z, Li W, Yuan H, et al. Intermetallics, DOI:10. 1016/j. intermet. 2021. 107391.
13 Fujiwara T, Nakamura A, Hosomi M, et al. Philosophical Magazine A-Physics of Condensed Matter Structure Defects and Mechanical Properties, 1990, 61(4), 591.
14 Witusiewicz V T, Bondar A A, Hecht U, et al. Journal of Alloys and Compounds, 2008, 465(1-2), 64.
15 Burgers W G. Physica, 1934, 1, 561.
16 Jaffee R I, Promisel N E. The science, technology, and application of titanium, Pergamon Press, UK, 1970, pp.677.
17 Jung I S, Jang H S, Oh M H, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2002, 329, 13.
18 Wang Z T, Zheng G, Qi Z X, et al. Chinese Science Bulletin, 2023, 68(25), 3259 (in Chinese).
王子特, 郑功, 祁志祥, 等. 科学通报, 2023, 68(25), 3259.
19 Wang Y Z, Yuan H, Ding H S, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2019, 752, 199.
20 Kim M C, Oh M H, Wee D M, et al. Materials Transactions Jim, 1996, 37(5), 1197.
21 Yao K F, Inui H, Kishida K, et al. Acta Metallurgica Et Materialia, 1995, 43(3), 1075.
22 Yokoshima S, Yamaguchi M. Acta Materialia, 1996, 44(3), 873.
23 Matsuo T, Nozaki T, Asai T, et al. Intermetallics, 1998, 6(7-8), 695.
24 Matsuo T, Nozaki T, Asai T, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2002, 329, 774.
25 Johnson D R, Masuda Y, Inui H, et al. Acta Materialia, 1997, 45(6), 2523.
26 Yamaguchi M, Johnson D R, Lee H N, et al. Intermetallics, 2000, 8(5-6), 511.
27 Li Y, Liu H G, Wang S D, et al. Acta Metallurgica Sinica, 2015, 51(8), 957 (in Chinese).
李勇, 刘国怀, 王昭东, 等. 金属学报, 2015, 51(8), 957.
28 Su Y Q, Liu T, Li X Z, et al. Acta Metallurgica Sinica, 2018, 54(5), 647 (in Chinese).
苏彦庆, 刘桐, 李新中, 等. 金属学报, 2018, 54(5), 647.
29 Fan J L, Wu S, Gao H X, et al. Materials Reports, 2016, 30(23), 74 (in Chinese).
樊江磊, 吴深, 高红霞, 等. 材料导报, 2016, 30(23), 74.
30 Yue X A, Shen J, Wang L, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, DOI;10. 1016/j. msea. 2021. 141139.
31 Yue X A, Shen J, Xiong Y, et al. Intermetallics, DOI:10. 1016/j. intermet. 2021. 107406.
32 Zheng S K, Shen J, Lu X H, et al. Materialia, DOI:10. 1016/j. mtla. 2021. 101306.
33 Fan J, Guo J, Long W, et al. Materials Science and Technology, 2014, 30(2), 183.
34 Yu Y Z, Li Y S, Cheng X L, et al. Materials Reports, 2012, 26(7), 102 (in Chinese).
于延洲, 李永胜, 程晓玲, 等. 材料导报, 2012, 26(7), 102.
35 Shang Z B. Microstructure and properties of cold crucible directionally solidified Ti-47Al-2Cr-2Nb and its high crycle fatigue. Master’s Thesis, Harbin Institute of Technology, China, 2017 (in Chinese).
尚子博. 冷坩埚定向凝固Ti-47Al-2Cr-2Nb的组织性能与高周疲劳. 硕士学位论文, 哈尔滨工业大学, 2017.
36 Ding X F, Lin J P, Zhang L Q, et al. Scripta Materialia, 2011, 65(1), 61.
37 Zhang L, Lin J P, Ding X F, et al. Journal of Alloys and Compounds, 2016, 656, 720.
38 Zhang C J, Xu D M, Fu H Z, et al. Journal of Crystal Growth, 2008, 310(15), 3604.
39 Du Y J, Shen J, Xiong Y L, et al. JOM, 2015, 67(6), 1258.
40 Liu T, Luo L, Su Y, et al. Intermetallics, 2016, 73, 1.
41 Drevermann A, Schmitz G J, Behr G, et al. In:Symposium on Advanced Intermetallic-Based Alloys for Extreme Environment and Energy Applications held at the 2008 MRS Fall Meeting. Boston, 2009, pp.97.
42 Yue X A, Shen J, Xiong Y L, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, DOI:10. 1016/j. msea. 2021. 141938.
43 Bridgman P W. Proceedings of the American Academy of Arts and Sciences, 1925, 60(1-14), 305.
44 Stockbarger D C. Review of Scientific Instruments, 1936, 7(3), 133.
45 Lapin J, Gabalcova Z, Pelachova T. Intermetallics, 2011, 19(3), 396.
46 Zhang Y, Li X, Liu G, et al. Acta Metallurgica Sinica, 2013, 49(9), 1061.
47 Li K, Chen G, Zhang H, et al. Materials Research Express, 2018, 5, 11. .
48 Li K, Xiong F, Chen G, et al. Intermetallics, 2018, 102, 106.
49 Fan J L, Liu J X, Tian S X, et al. Journal of Alloys and Compounds, 2015, 650, 8.
50 Fan J L, Wei Z X, Li Y, et al. International Journal of Metalcasting, 2022, 16(2), 622.
51 Keck P H, Golay M J E. Physical Review, 1953, 89(6), 1297.
52 Kawabata T, Abumiya T, Kanai T, et al. Acta Metallurgica Et Materialia, 1990, 38(8), 1381.
53 Kumagai T, Abe E, Nakamura M. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 1998, 29(1), 19.
54 Kim J H, Kim S W, Lee H N, et al. Intermetallics, 2005, 13(10), 1038.
55 Liu R, Teng C, Cui Y, et al. Acta Metallurgica Sinica, 2012, 48(2), 235.
56 Jin H, Jia Q, Liu R H, et al. Acta Metallurgica Sinica, 2019, 55(12), 1519 (in Chinese).
金浩, 贾清, 刘荣华, 等. 金属学报, 2019, 55(12), 1519.
57 Hu Y S, Jin H, Liu R H, et al. Transactions of Materials and Heat Treatment, 2014, 35(9), 45 (in Chinese).
胡轶嵩, 金浩, 刘荣华, 等. 材料热处理学报, 2014, 35(9), 45.
58 Fu H Z, Shen J, Liu L, et al. Journal of Materials Processing Technology, 2004, 148(1), 25.
59 Zheng S K, Shen J, Wang W, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, DOI:10. 1016/j. msea. 2023. 145157.
60 Du Y J, Shen J, Xiong Y L, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2015, 621, 94.
61 Du Y J, Shen J, Xiong Y L, et al. Intermetallics, 2015, 61, 80.
62 Zheng S K, Shen J, Shang Z, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, DOI:10. 1016/j. msea. 2020. 139962.
63 Du Y J, Shen J, Xiong Y, et al. Journal of Materials Research, 2018, 33(8), 958.
64 Zheng S K, Shen J, Lu X H, et al. Journal of Alloys and Compounds, 2022, 912, 165200.
65 Du Y J. Frabication of lamellar microstructure of TiAl alloys by electromagnetic confinement and its properties. Ph. D. Thesis, Northwestern Polytechnical University, China, 2017(in Chinese).
杜玉俊, TiAl合金定向片层组织电磁约束制备及力学性能. 博士学位论文, 西北工业大学, 2017.
66 Kim S E, Lee Y T, Oh M H, et al. Intermetallics, 2000, 8(4), 399.
67 Yang J R, Chen R R, Su Y Q, et al. Energy, 2018, 161, 143.
68 Ding H S, Chen R R, Guo J J, et al. Materials Letters, 2005, 59(7), 741.
69 Fu H Z. Directional solidification processing of aero-high temperature materials, Science Press, China, 2015, pp.332(in Chinese).
傅恒志. 航空航天材料定向凝固, 科学出版社, 2015, pp.332.
70 Yang J R, Chen R R, Ding H S, et al. Intermetallics, 2013, 42, 184.
71 Xu X S, Ding H S, Huang H T, et al. Journal of Materials Research and Technology-Jmr&T, 2021, 11, 2221.
72 Ding H S, Chen R R, Wang Y L, et al. In:The Fifth Pacific Rim International Conference on Advanced Materials and Processing. Beijing, 2004, pp.2575.
73 Chen R, Ding H, Guo J, et al. Special Casting & Nonferrous Alloys, 2008, 28(2), 93.
74 Wang Y L, Ding H S, Bi W S, et al. Rare Metal Materials and Engineering, 2005, 34(10), 1627.
75 Chen R R, Ding H S, Guo J J, et al. Rare Metal Materials and Engineering, 2007, 36(10), 1722.
76 Luo L, Ding H S. Journal of Aeronautical Materials, 2009, 29(5), 19.
77 Wang Y L, Fu H Z. Rare Metal Materials and Engineering, 2010, 39(5), 787.
78 Yang J R, Chen R R, Ding H S, et al. Transactions of Nonferrous Metals Society of China, 2012, 22(1), 157.
79 Chen R R, Yang J R, Ding H S, et al. Advanced Materials Research, 2012, 472-475(1), 767.
80 Yang J R, Chen R R, Ding H S, et al. In:International Conference on Applied Mechanics, Materials and Manufacturing (ICAMMM 2011). Shenzhen, 2011, pp.335.
81 Chen R R, Yang J R, Ding H S, et al. China Foundry, 2012, 9(1), 15.
82 Dong S L, Wang Q, Chen R R, et al. Materials Characterization, DOI:10. 1016/j. matchar. 2022. 112591.
83 Yang J R, Chen R R, Ding H S, et al. Journal of Materials Processing Technology, 2014, 214(3), 735.
84 Yang Y H. Investigation on transfer behaviors during directional solidification of TiAl-based alloys by electromagetic cold crucible. Ph. D. Thesis, Harbin Institute of Technology, China, 2019 (in Chinese).
杨耀华. TiAl基合金冷坩埚定向凝固过程中传输特性研究. 博士学位论文, 哈尔滨工业大学, 2019.
85 Johnson D R, Lee H N, Muto S, et al. Intermetallics, 2001, 9(10-11), 923.
86 Yang Y H, Chen R R, Guo J J, et al. International Journal of Heat and Mass Transfer, 2018, 122, 1128.
87 Yang J R, Chen R R, Guo J J, et al. Rare Metal Materials and Engineering, 2016, 45(5), 1357 (in Chinese).
杨劼人, 陈瑞润, 郭景杰, 等. 稀有金属材料与工程, 2016, 45(5), 1357.
88 Ding H S, Nie G, Chen R R, et al. Intermetallics, 2012, 31, 264.
89 Liu Y, Xue X, Fang H, et al. Crystengcomm, 2020, 22(7), 1188.
90 Chen R R, Liu Y L, Xue X, et al. Materials Characterization, DOI:10. 1016/j. matchar. 2021. 111354179.
91 Liu Y L, Xue X, Chen R R, et al. International Communications in Heat and Mass Transfer, DOI:10. 1016/j. icheatmasstransfer. 2019. 104315.
92 Ukai S, Taya K, Nakamura K, et al. Journal of Alloys and Compounds, 2018, 744, 204.
93 Zhang Z W, Chen G, Chen G L. Acta Materialia, 2007, 55(17), 5988.
94 Zhang Z W, Chen G L, Chen G. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2006, 434(1-2), 58.
95 Liu Y L, Xue X, Fang H Z, et al. Journal of Alloys and Compounds, DOI:10. 1016/j. jallcom. 2020. 158441.
96 Liu Y L, Xue X, Fang H Z, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, DOI:10. 1016/j. msea. 2019. 138701.
97 Liu Y L, Xue X, Fang H Z, et al. Journal of Materials Research and Technology-Jmr&T, 2020, 9(6), 16355.
98 Dong S L, Wu W, Chen R R, et al. Intermetallics, DOI:10. 1016/j. intermet. 2023. 108087.
99 Wang H, Wang Q, Ding H S, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, DOI:10. 1016/j. msea. 2021. 141904.
100 Du Y J, Shen J, Xiong Y L, et al. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2019, 50A(9), 4166.
101 Wang Q, Ding H S, Zhang H L, et al. Materials & Design, 2017, 125, 146.
102 Liu Y, Xue X, Tan Y M, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, DOI:10. 1016/j. msea. 2020. 140038.
103 Dong S L, Chen R R, Guo J J, et al. Materials & Design, 2015, 67, 390.
104 Dong S L, Chen R R, Guo J J, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2014, 614, 67.
105 Xing M. Microstructure and high temperature mechanical properties of cold crucible directionally solidified titanium aluminum alloy. Master’s Thesis, Harbin Institute of Technology, China, 2020 (in Chinese).
邢明. 冷坩埚定向凝固TiAl合金组织与高温力学性能研究. 硕士学位论文, 哈尔滨工业大学, 2020.
106 Xia Z Z. Preparation and mechanical properties of Ti-48Al-2Cr-2Nb alloy having similarly oriented lamellae with fine lamellar spacing. Ph. D. Thesis, University of Science and Technology of China, China, 2022 (in Chinese).
夏智州. 定向细小片层Ti-48Al-2Cr-2Nb合金的制备及其力学性能的研究. 博士学位论文, 中国科学技术大学, 2022.
107 Wang Q. Study on the microstructures and mechanical behavior of Ti-47Al-2Nb-2Cr-(Er, C, Mn) directionally solidified by cold crucible. Ph. D. Thesis, Harbin Institute of Technology, China, 2019 (in Chinese).
王强. 冷坩埚定向凝固Ti-47Al-2Nb-2Cr-(Er, C, Mn)合金显微组织及力学行为研究. 博士学位论文, 哈尔滨工业大学, 2019.
108 Ding H S, Wang Y Z, Chen R R, et al. Materials & Design, 2015, 86, 670.
109 Genc O, Unal R. Journal of Alloys and Compounds, DOI:10. 1016/j. jallcom. 2022. 167262.
110 Wang Y Z, Liu X W, Dong D, et al. Journal of Materials Research and Technology-Jmr&T, 2023, 25, 570.
111 Wang Y Z, Ding H S, Zhang H L, et al. Materials & Design, 2014, 64, 153.
112 Huang H T. Research on microstructure evolution of composite cold crucible directionally solidified TiAl based alloy. Master’s Thesis, Harbin Institute of Technology, China, 2019 (in Chinese).
黄海涛. 复合冷坩埚定向凝固TiAl基合金组织演化研究. 硕士学位论文, 哈尔滨工业大学, 2019.
113 Kishida K, Johnson D R, Masuda Y, et al. Intermetallics, 1998, 6(7-8), 679.
114 Wang Q, Chen R R, Gong X, et al. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2018, 49A(10), 4555.
115 Wang Q, Chen R, Gong X, et al. Intermetallics, 2018, 94, 152.
116 Xu X S, Ding H S, Huang H T, et al. Journal of Materials Science & Technology, 2022, 127, 115.
117 Wang Q, Chen R R, Yang Y H, et al. Advanced Engineering Materials, DOI:10. 1002/adem. 201700734.
118 Wang Q, Chen R R, Yang Y H, et al. Intermetallics, 2018, 100, 104.
119 Yang J R, Fang X, Liu Y, et al. Rare Metals, 2021, 40(12), 3588.
120 Liang Z Q, Xiao S L, Cai Y, et al. Vacuum, DOI:10. 1016/j. vacuum. 2023. 112731.
121 Loginov P A, Markov G M, Korotitskiy A V, et al. Materials Characterization, DOI:10. 1016/j. matchar. 2023. 113367.
122 Wang Q. Creep behavior of high Nb-TiAl alloys prepared by cold crucible directional solidification. Ph. D. Thesis, Harbin Institute of Technology, China, 2020 (in Chinese).
王琪. 冷坩埚定向凝固高Nb-TiAl合金蠕变行为. 博士学位论文, 哈尔滨工业大学, 2020.
123 Wang Q, Chen R R, Yang Y, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2018, 711, 508.
124 Li W. Microstructure and fatigue properties of cold crucible directional solidified TiAl alloy. Master’s Thesis, Harbin Institute of Technology, China, 2020 (in Chinese).
李伟. 冷坩埚定向凝固TiAl合金组织与疲劳性能. 硕士学位论文, 哈尔滨工业大学, 2020.
125 Xu X S, Ding H S, Li W, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, DOI:10. 1016/j. msea. 2021. 141633.
126 Ding H S, Shang Z B, Wang Y Z, et al. Acta Metallurgica Sinica, 2015, 51(5), 569 (in Chinese).
丁宏升, 尚子博, 王永喆, 等. 金属学报, 2015, 51(5), 569.
127 Xu X S, Ding H S, Huang H T, et al. International Journal of Fatigue, DOI:10. 1016/j. ijfatigue. 2023. 107597.
128 Chen Y, Cao Y D, Qi Z X, et al. Journal of Materials Science & Technology, 2021, 93, 53.
129 Umakoshi Y, Yasuda H Y, Nakano T. Intermetallics, 1996, 4, S65.
130 Xu X S, Ding H S, Li W, et al. Materials Characterization, DOI:10. 1016/j. matchar. 2021. 111444.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[8] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[9] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[10] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[11] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[12] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[13] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[14] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[15] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed