Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 22090168-6    https://doi.org/10.11896/cldb.22090168
  无机非金属及其复合材料 |
高温处理对玄武岩纤维抗拉强度和结构的影响
苗世坦1, 刘嘉麒1,2,*, 郭玲1, 刘忠1, 丁宝明3, 张蕾2
1 河北地质大学宝石与材料学院,河北省岩石矿物材料绿色开发重点实验室,玄武岩纤维研究所,石家庄 050031
2 中国科学院地质与地球物理研究所,北京 100029
3 中国地质大学(北京)地球科学与资源学院,北京 100083
Effect of High Temperature Treatment on Tensile Strength and Structure of Basalt Fiber
MIAO Shitan1, LIU Jiaqi1,2,*, GUO Ling1, LIU Zhong1, DING Baoming3, ZHANG Lei2
1 Institute of Basalt Fiber Materials, Hebei Key Laboratory of Green Development of Rock and Mineral Materials, School of Gem and Materials, Hebei GEO University, Shijiazhuang 050031, China
2 Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
3 School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
下载:  全 文 ( PDF ) ( 15340KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作选取山东某地的玄武岩矿石为原料,制备了连续玄武岩纤维,并在空气气氛条件下,对玄武岩纤维进行200~900 ℃的高温热处理。采用多种现代分析测试手段,研究了热处理温度对玄武岩纤维的抗拉强度、表面形貌、微观结构及析晶行为的影响。结果表明:随着热处理温度的升高,纤维的抗拉强度呈近线性下降趋势;纤维表面出现沿轴向裂纹分布的缺陷且数量增多,损伤程度增大;纤维内部单元无序化程度增加,结构逐渐解聚;800 ℃热处理后,主要析晶相为辉石相与磁铁矿相,900 ℃热处理后出现赤铁矿相。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苗世坦
刘嘉麒
郭玲
刘忠
丁宝明
张蕾
关键词:  玄武岩纤维  高温处理  抗拉强度  结构    
Abstract: In this work, continuous basalt fibers were prepared from basalt in Shandong Province. Basalt fibers were heat treated at 200—900 ℃ under air atmosphere. The effects of heat treatment temperature on tensile strength, surface morphology, microstructure and crystallization beha-vior of basalt fibers were studied by various modern analysis and testing methods. The results showed that the tensile strength of the fibers decreased linearly with the increase of heat treatment temperature. Defects on the surface that distribute along the axial cracks increased in number and severity. The fiber structure gradually decomposed and the degree of disorder of internal units increased. After heat treatment at 800 ℃, the main crystallization phases were augite phase and magnetite phase. Hematite phase occurs after heat treatment at 900 ℃.
Key words:  basalt fiber    high temperature treatment    tensile strength    structure
发布日期:  2024-06-25
ZTFLH:  TB321  
基金资助: 河北省科技厅指导地方科技发展资金项目(206Z1501G)
通讯作者:  *刘嘉麒,中国科学院院士,中国科学院地质与地球物理研究所研究员,河北地质大学特聘教授。主要从事火山学、第四纪地质学、玄武岩新材料等研究。共发表论文300余篇,代表专著有《中国火山》《玄武岩纤维材料》。liujq@mail.iggcas.ac.cn   
作者简介:  苗世坦,现为河北地质大学宝石与材料学院硕士研究生,在刘嘉麒研究员的指导下进行研究。目前主要研究领域为天然矿物材料。
引用本文:    
苗世坦, 刘嘉麒, 郭玲, 刘忠, 丁宝明, 张蕾. 高温处理对玄武岩纤维抗拉强度和结构的影响[J]. 材料导报, 2024, 38(11): 22090168-6.
MIAO Shitan, LIU Jiaqi, GUO Ling, LIU Zhong, DING Baoming, ZHANG Lei. Effect of High Temperature Treatment on Tensile Strength and Structure of Basalt Fiber. Materials Reports, 2024, 38(11): 22090168-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090168  或          http://www.mater-rep.com/CN/Y2024/V38/I11/22090168
1 Liu J Q. Basalt fiber material, Chemical Industry Press, China, 2021, pp.1 (in Chinese).
刘嘉麒. 玄武岩纤维材料, 化学工业出版社, 2021, pp.1.
2 Ding B M, Zhang L, Liu J Q. China Mining Magazine, 2019, 28(10), 1 (in Chinese).
丁宝明, 张蕾, 刘嘉麒. 中国矿业, 2019, 28(10), 1.
3 Zhang J W, She X L, Liu J Q. Materials Reports, 2023, 37(11), 22010106 (in Chinese).
张建伟, 佘希林, 刘嘉麒. 材料导报, 2023, 37(11), 22010106.
4 Sarasini F, Tirillò J, Seghini M C. Composites Part B: Engineering, 2018, 132, 77.
5 Chen J, Gu Y Z, Yang Z J, et al. Journal of Materials Engineering, 2017, 45(06), 61 (in Chinese).
陈菁, 顾轶卓, 杨中甲, 等. 材料工程, 2017, 45(06), 61.
6 Yan T. Effect of heat treatment on the structure and properties of basalt fiber. Master's Thesis, Donghua University, China, 2022 (in Chinese).
闫坦. 热处理制度对玄武岩纤维结构及性能的影响. 硕士学位论文, 东华大学, 2022.
7 Liu H X, Zheng T Y. Industrial Construction, 2022, 52(02), 18 (in Chinese).
刘华新, 郑太元. 工业建筑, 2022, 52(02), 18.
8 Chlup Z,Černý M, Strachota A, et al. Composites Part B: Engineering, 2018, 147, 122.
9 Chlup Z,Černý M, Strachota A, et al. Journal of the European Ceramic Society, 2014, 34(14), 3389.
10 Sauder C, Lamon J, Pailler R. Carbon, 2004, 42(04), 715.
11 Andersons J, Joffe R, Hojo M, et al. Composites Science and Technology, 2002, 62(01), 131.
12 Zu Q, Song W, Huang S L, et al. Journal of the Chinese Ceramic Society, 2022, 50(04), 957 (in Chinese).
祖群, 宋伟, 黄松林, 等. 硅酸盐学报, 2022, 50(04), 957.
13 Wang M C, Zhang Z G, Sun Z J, et al. Acta Materiae Compositae Sinica, 2008(03), 105 (in Chinese).
王明超, 张佐光, 孙志杰, 等. 复合材料学报, 2008(03), 105.
14 Song P F, Wang Q M. Journal of Qingdao University, 2008(01), 9 (in Chinese).
宋鹏飞, 王秋美. 青岛大学学报, 2008(01), 9.
15 Liu K W. China Building Materials,1957(02), 24 (in Chinese).
刘克武. 建筑材料工业, 1957(02), 24.
16 Karamanov A, Maccarini S L, Karamanova E, et al. Journal of Non-Crystalline Solids, 2014, 389, 50.
17 Zu Q, Zhao Q. High performance glass fiber, National Defense Industry Press, China, 2017, pp.106 (in Chinese).
祖群, 赵谦. 高性能玻璃纤维, 国防工业出版社, 2017, pp.106.
18 Li M, Xing D, Zheng Q B, et al. Construction and Building Materials, 2022, 316, 125783.
19 Ye X L, Chen Z F,Journal Nanjing University of Aeronautics & Astronautics, 2017, 49(04), 580 (in Chinese).
叶信立, 陈照峰. 南京航空航天大学学报, 2017, 49(04), 580.
20 Sun Y T. Glass Fiber, 1992(03), 13 (in Chinese).
孙义泰. 玻璃纤维, 1992(03), 13.
21 Tang X L, Zhang M, Guo M, et al. Journal University of Science and Technology Beijing, 2011, 33(12), 1523 (in Chinese).
唐续龙, 张梅, 郭敏, 等. 北京科技大学学报, 2011, 33(12), 1523.
22 Karamanov A, Pelino M. Journal of Non-Crystalline Solids, 2001, 281, 139.
23 Karamanov A, Ergul S, Akyildiz M, et al. Journal of Non-Crystalline Solids, 2008, 354(02), 290.
24 Xing J S, Wang S B, Zhang Y. Acta Materiae Compositae Sinica, 2006(06), 75 (in Chinese).
邢建申, 王树彬, 张跃. 复合材料学报, 2006(06), 75.
25 Cao H L, Lang H J, Meng S H. Hi-Tech Fiber & Application, 2007(05), 8 (in Chinese).
曹海琳, 郎海军, 孟松鹤. 高科技纤维与应用, 2007(05), 8.
26 Mercier M, Di Muro A, Giordano D, et al. Geochimica et Cosmochimica Acta, 2009, 73(01), 197.
27 Liu Z W, Zhang S M, Luo L D, et al. Journal of the Chinese Ceramic Society, 2022, 50(04), 937 (in Chinese).
刘郑威, 张帅明, 罗理达, 等. 硅酸盐学报, 2022, 50(04), 937.
28 Xiong Y, Zhao H X, Gan F X. Spectroscopy and Spectral Analysis, 2012, 32(04), 997 (in Chinese).
熊义, 赵虹霞, 干福熹. 光谱学与光谱分析, 2012, 32(04), 997.
29 Wang R, Zhang B M. Spectroscopy and Spectral Analysis, 2010, 30(02), 376 (in Chinese).
王蓉, 张保民. 光谱学与光谱分析, 2010, 30(02), 376.
[1] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[4] 位振, 戴飞, 何强. 多级结构超疏水表面的制备与性能分析[J]. 材料导报, 2024, 38(9): 22100133-5.
[5] 陈庆发, 杨文雄, 吴家有, 牛文静. 水灰比对薄喷衬层材料抗拉性能影响的宏微观试验研究[J]. 材料导报, 2024, 38(8): 22090309-7.
[6] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[7] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[8] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[9] 龚浩, 程东海, 刘钊泽, 李文杰, 邹鹏远. CFRP/TC4激光连接工艺及接头组织和性能[J]. 材料导报, 2024, 38(7): 22110267-5.
[10] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[11] 黎涛, 孟威明, 王丁丁, 卫春祥, 鲁红典. 多层结构聚丙烯酰胺水凝胶太阳能蒸发器的制备及性能[J]. 材料导报, 2024, 38(7): 22080085-5.
[12] 苏咸凯, 解志鹏, 张达, 侯圣平, 杨斌, 梁风. 单壁碳纳米角的制备及电化学应用进展[J]. 材料导报, 2024, 38(6): 22100192-13.
[13] 张霞, 吴瑛, 袁牧锋, 王春栋. MOFs衍生物在尿素氧化中的研究进展[J]. 材料导报, 2024, 38(6): 23020193-10.
[14] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[15] 李雪伍, 王红星, 郭伟玲, 邢志国, 黄艳斐, 王海斗. 红外抗反射微纳结构刻蚀制备研究进展[J]. 材料导报, 2024, 38(6): 22110062-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed