Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22030303-7    https://doi.org/10.11896/cldb.22030303
  金属与金属基复合材料 |
高强韧弹簧钢中Ti-V-B-N-C系微量元素耦合热力学分析及其对第二相析出行为的影响
王艳林1,*, 张灵通1,2, 张博炜1, 綦才1, 陈晓华3, 王自东1,3
1 北京科技大学材料科学与工程学院,北京 100083
2 西王金属有限公司,山东 滨州 256209
3 北京科技大学新金属材料国家重点实验室,北京 100083
Thermodynamic Analysis for the Ti-V-B-N-C System Microelements Coupling and Its Effects on the Secondary Phase Precipitation Behavior in High Strength and Toughness Spring Steels
WANG Yanlin1,*, ZHANG Lingtong1,2, ZHANG Bowei1, QI Cai1, CHEN Xiaohua3, WANG Zidong1,3
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Xiwang Metal Co., Ltd., Binzhou 256209, Shandong, China
3 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 12234KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多元微量元素是决定高强韧钢性能的关键因素,其在钢中存在的形式主要为固溶于铁基体中和形成相应的第二相。基于多元微量元素耦合理论,构建其耦合热力学模型,并对Ti-V-B-N-C系弹簧钢中多元微量元素固溶-析出行为进行了分析,通过热力学计算出不同温度下各微量元素的固溶量以及多元微量元素体系与第二相含量间的定量关系,对弹簧钢淬火组织的硬度进行检测,以及对其组织微结构进行表征。研究表明,在850 ℃时,Ti0.016-V0.15-N0.004-C0.48-B0.0014系弹簧钢50-S2#中[V]为0.038 392 66%,[Ti]为3.295×10-5%,[B]为3.860 8×10-4%,[N]为3.08×10-6%,[C]为0.451 987 09%,且此温度下淬火时其淬透性能最佳,在距淬火端面27 mm处,其组织为马氏体+贝氏体(约30%),硬度达HRC53.0。这验证了在淬火温度下科学确保弹簧钢基体中存在一定的痕量固溶B元素可大幅改善其淬透性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王艳林
张灵通
张博炜
綦才
陈晓华
王自东
关键词:  高强韧钢  多元微量元素  热力学分析  多元纳米相  析出行为    
Abstract: The multiple microelements are the key factors to determine the properties of high strength and toughness steels, and the form of microelements in steel is mainly solid solution in iron matrix and formation of corresponding secondary phase. Based on the coupling theory of multiple microelements, the coupling thermodynamic model was constructed, and the solid solution and precipitation behavior of multiple microelements was analyzed in Ti-V-B-N-C system spring steel, the solid solution amount of each microelement at different temperatures was calculated through thermodynamics, and the quantitative relationship between the multiple microelements system and the content of secondary phases at different temperatures was also determined. The hardness for the quenching structure of spring steel was tested, and the microstructure was cha-racterized. The research shows that the [V]was 0.038 392 66%, [Ti]was 3.295×10-5%, [B]was 3.860 8×10-4%, [N]was 3.08×10-6%, [C]was 0.451 987 09% at 850 ℃ in Ti0.016-V0.15-N0.004-C0.48-B0.0014 system spring steel 50-S2#, and the hardenability of material 50-S2# was the best when the quenched temperature was 850 ℃, when the distance from the quenched end face was 27 mm, the microstructure was martensite and bainite (about 30%), the HRC was 53.0. It’s verified that the hardenability of spring steel can be greatly improved by scientifically ensuring that there is a certain amount of trace solid-soluted boron (B) element existed in the matrix at the quenching temperature.
Key words:  high strength and toughness steel    multiple microelements    thermodynamic analysis    multiple nanoparticles    precipitation behavior
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  TG142  
基金资助: 国家自然科学基金(52071012);中央引导地方科技发展资金基础研究(YDZX2021005);江西省主要学科学术和技术带头人资助计划(20182BCB22020)
通讯作者:  *王艳林,北京科技大学材料科学与工程学院副教授,2010年获得北京科技大学博士学位。具有多年的企业工作经历,曾获江苏省科技副总项目入选对象,江西省主要学科学术和技术带头人资助计划,江西省百千万人才,江西省青年科学家(井冈之星)培养对象等。主要研究方向为高端装备纳米结构金属材料、多元微量元素耦合与“多元多态多温区”纳米相层级构筑理论及工程化应用研究。主持国家自然科学基金面上项目、国防预研项目、装备预先研究领域基金、中央引导地方科技发展专项资金基础研究以及企业委托项目等20余项,发表SCI、EI期刊论文60余篇,副主编国家级规划教材1部,拥有发明专利20余项,获冶金科学技术奖、中国机械工业科学技术发明奖等科技成果一等奖3项、二等奖1项。wangyanlin921@ustb.edu.cn   
引用本文:    
王艳林, 张灵通, 张博炜, 綦才, 陈晓华, 王自东. 高强韧弹簧钢中Ti-V-B-N-C系微量元素耦合热力学分析及其对第二相析出行为的影响[J]. 材料导报, 2023, 37(20): 22030303-7.
WANG Yanlin, ZHANG Lingtong, ZHANG Bowei, QI Cai, CHEN Xiaohua, WANG Zidong. Thermodynamic Analysis for the Ti-V-B-N-C System Microelements Coupling and Its Effects on the Secondary Phase Precipitation Behavior in High Strength and Toughness Spring Steels. Materials Reports, 2023, 37(20): 22030303-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030303  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22030303
1 He B B, Hu B, Yen H W, et al. Science, 2017, 357, 1029.
2 Sun W W, Marceau R K, Styles M J, et al. Acta Materialia, 2017, 130, 28.
3 Lu K. Nature Reviews Materials, 2016, 1, 16019.
4 Wang Y L, Zhou M, Pang X L, et al. Metals, 2017, 7(4), 110.
5 Pavlina E J, Van Tyne C J. Materials Characterization, 2015, 102, 35.
6 Ma M T. Materials for Mechanical Engineering, 2006, 30(5), 5(in Chinese).
马鸣图. 机械工程材料, 2006, 30(5), 5.
7 Zhou H L, Kirkaldy J. Metallurgical Transactions A, 1991, 22A(7), 1511.
8 Speer J G, Michael J R, Hansen S S. Metallurgical Transactions A, 1987, 18, 211.
9 Poths R M, Higginson R L, Palmiers E J. Scripta Materialia, 2001, 44, 147.
10 Hong S G, Jun H J, Kang K B. Scripta Materialia, 2003, 48(8), 1201.
11 Khatkar V K, Behera B K, Manjunath R N. Composites Part B: Engineering, 2020, 182, 107662.
12 Al-Obaidi A J, Ahmed S J, Sukar H M. Materials Today: Proceedings, 2020, 20, 566.
13 Gong W M, Yang C F, Zhang Y Q. Journal of Iron and Steel Research, 2006, 18(10), 49(in Chinese).
龚维幂, 杨才福, 张永权. 钢铁研究学报, 2006, 18(10), 49.
14 Wang G D. Rolling technology innovation and development collection of RAL achievements of Northeast University, Metallurgical Industry Press, China, 2015, pp. 53(in Chinese).
王国栋. 轧制技术创新与发展 东北大学RAL成果汇编, 冶金工业出版社, 2015, pp. 53.
15 Zhang Z Y, Yong Q L, Sun X P, et al. Iron and Steel, 2012, 47(4), 79(in Chinese).
张正延, 雍歧龙, 孙新平, 等. 钢铁, 2012, 47(4), 79.
16 Wang S Z, Gao Z J, Wu G L, et al. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4), 645.
17 Zhang X Z, Zhang L N, Ma Y. In: International Conference on Advanced Structural Steels. Shanghai, 2004, pp. 84.
18 Jiang S H, Wang H, Wu Y, et al. Nature, 2017, 544, 460.
19 Wang Y L, Zhou M, Pang X L, et al. Materials, 2018, 11, 1343.
20 Wang Y L, Fu L H, Zhou M, et al. Materials, 2019, 12, 2952.
21 Luo D Q, Xie F M, Wang Z G, et al. Materials Reports, 2016, 30(6), 90(in Chinese).
罗迪强, 谢飞鸣, 汪志刚, 等. 材料导报, 2016, 30(6), 90.
22 Zhang C L, Shao Z H, Li J, et al. Materials Reports, 2021, 35(5), 5102(in Chinese).
张朝磊, 邵洙浩, 李戬, 等. 材料导报, 2021, 35(5), 5102.
23 Watanabe S C, Ohtani H, Kunitake T S. Transactions ISIJ, 1983, 23(2), 120.
[1] 杨明, 陈晓华, 王自东, 王艳林, 左玲立. 合金元素Ni/Al对45Si2MnCr2Mo超高强韧钢冲击磨料磨损行为的影响[J]. 材料导报, 2023, 37(13): 22030042-8.
[2] 温冬辉, 吕阳, 李震, 王清, 唐睿, 董闯. 强碳化物形成元素与碳的配比关系和稳定化处理对310S奥氏体不锈钢析出相行为的影响[J]. 材料导报, 2019, 33(18): 3101-3106.
[3] 田亚强, 黎旺, 郑小平, 宋进英, 魏英立, 陈连生. 两相区退火热轧中锰钢碳化物析出行为与组织性能研究[J]. 材料导报, 2019, 33(16): 2765-2770.
[4] 王义飞, 高东强, 田普建, 任威, 刘延辉, 宋文杰, 杨艳玲, 杨光. 高铌TiAl合金中包晶α相消除的热力学及动力学分析[J]. 材料导报, 2019, 33(12): 2014-2018.
[5] 张振扬, 赵利忠, 张家胜, 钟喜春, 刘仲武. La2Fe14B和Ce2Fe14B合金在快淬和热处理过程中相析出行为的比较[J]. 《材料导报》期刊社, 2018, 32(8): 1271-1275.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed