Research Progress on Corrosion Inhibition of Steel and Copper by Organic Molecules Constructed by Heterocyclic Blocks
CHEN Lingli1, SHI Yueting1, LI Hongru1, WANG Xinchao1,2, ZHANG Shengtao1,*, GAO Fang1,*
1 College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China 2 School of Pharmacy, Heze University, Heze 274007, Shandong, China
Abstract: In modern industry, steel and copper are easily corroded by inorganic acids. In particular, acid rain is aggravated by industrial development, which can lead to serious corrosion of steel and copper. As a consequence, serious safety and economic loss and environmental pollution may be caused by copper corrosion. Therefore, it is significantly important to prevent corrosion of metals in acid media. The organic inhibitor approach receives intensive research attention to inhibit dissolution of steel and copper in acid media, because it shows various advantages such as low toxicity, high efficiency, low cost as well as environmental amicable. Adsorption of organic inhibitors on steel and copper surface can be strengthened by carried heteroatoms based on strong chemical interactions, and thus protection films may be formed. As a result, efficient corrosion inhibition of steel and copper in acid media can be achieved. Hence, carried polar heterocyclic blocks in organic corrosion inhibitors can promote tough adsorption and included apolar long fatty chains may exhibit stable orientation arraying on metal surface. Therefore, aggressive corrosion species are isolated from metal surface to achieve corrosion inhibition. Hence, in the light of research situation in corrosion inhibition of steel and copper in acid media, this paper emphasized recent two decade progress of heterocyclic blocks-based organic corrosion inhibitors for inhibiting corrosion of steel and copper in acid environments. Besides, a brief description of corrosion and corrosion inhibition of steel and copper is introduced. The corrosion inhibition efficiency of heterocyclic-contained organic compounds through chemical strategy is also analyzed and discussed, which include numbers of heterocyclic rings, numbers of carbon chains (fatty linkers) and numbers of heteroatomic functional groups and so on. The relationship between the chemical structures of organic inhibitor molecules and the corrosion inhibition properties are particularly analyzed and discussed based on experimental studies, molecular modeling and material theoretical simulation. The key future research direction and target in the field of organic corrosion inhibitors of steel and copper are also presented.
通讯作者:
*张胜涛,重庆大学化学化工学院教授、博士研究生导师,发表论文逾170篇,国家发明专利六项,美国专利一项,承担了三项国家自然科学基金、一项霍英东青年教师基金、多项部委和省市级课题的研究工作。重庆市物理化学学科学术带头人,《表面技术》杂志编委,中国化学学会委员,重庆市电镀协会专业委员会委员,历任重庆大学化学化工学院副院长和院长。主要从事应用化学领域的研究工作,特别是关于环境工程与电化学工程方面的研究工作。负责多项国家与省部级项目以及与企业合作项目的研究工作,在国际期刊上发表多篇研究论文,包括高被引用研究论文。先后被国家人事部和国家教委评为“全国优秀留学回国人员”,获得国务院政府津贴。stzhang@cqu.edu.cn 高放,重庆大学化学化工学院教授、博士研究生导师,发表论文100余篇,参与及承担国家级自然科学基金项目3项,重庆市自然科学基金项目2项,入选教育部新世纪人才计划与重庆市有机化学学科学术带头人。1990—1997年在北京师范大学分别获得学士学位与硕士学位,2000年在中国科学院感光化学研究所获得博士学位。2000—2006年在美国田纳西大学(University of Tennessee,Knoxville)从事博士后研究工作。2006年5月起在重庆大学进行研究工作,主要集中基于分子预构建的有机高分子材料与微纳米材料的制备与应用。负责多项国家与省部级项目以及与企业合作项目的研究工作,在国内、国际期刊上发表多篇研究论文,获得多项国家发明专利。fgao@cqu.edu.cn
陈伶俐, 石悦婷, 李红茹, 王新潮, 张胜涛, 高放. 杂环砌块构筑的有机分子对钢和铜的缓蚀性能研究进展[J]. 材料导报, 2023, 37(17): 22010137-15.
CHEN Lingli, SHI Yueting, LI Hongru, WANG Xinchao, ZHANG Shengtao, GAO Fang. Research Progress on Corrosion Inhibition of Steel and Copper by Organic Molecules Constructed by Heterocyclic Blocks. Materials Reports, 2023, 37(17): 22010137-15.
1 Li B. Chemical Engineering & Equipment, 2021(3), 184 (in Chinese). 李彬. 化学工程与装备, 2021(3), 184. 2 Yao L, Yao Y, Liu M, et al. Applied Chemical Industry, 2017, 46(8), 1613(in Chinese). 姚乐, 姚艺, 刘美, 等. 应用化工, 2017, 46(8), 1613. 3 Marzorati S, Verotta L, Trasatti S P. Molecules, 2018, 24(1), 48. 4 El Sherbini E E F. Materials Chemistry and Physics, 1999, 60(3), 286. 5 Shokry H, Yuasa M, Sekine I, et al. Corrosion Science, 1998, 40(12), 2173. 6 Li Y, Zhao P, Liang Q, et al. Applied Surface Science, 2005, 252(5), 1245. 7 Morales-Gil P, Negrón-Silva G, Romero-Romo M, et al. Electrochimica Acta, 2004, 49(26), 4733. 8 Zhuang Q, Young A, Callam C S, et al. Annals of the New York Academy of Sciences, 2016, 1374(1), 94. 9 Obot I B, Obi-Egbedi N O, Umoren S A. Corrosion Science, 2009, 51(8), 1868. 10 Vinutha M R, Venkatesha T V. Portugaliae Electrochimica Acta, 2016, 34(3), 157. 11 Kobayashi H, Sakai S, Asano M, et al. International Journal of Pressure Vessels and Piping, 2000, 77(14-15), 929. 12 Cotting F, Aoki I V. Surface & Coatings Technology, 2016, 303, 310. 13 De Souza F S, Spinelli A. Corrosion Science, 2009, 51(3), 642. 14 Bashir S, Singh G, Kumar A. Portugaliae Electrochimica Acta, 2019, 37(2), 83. 15 Popoola L T. Corrosion Reviews, 2019, 37(2), 71. 16 Bastidas J M, Polo J L, Cano E, et al. Journal of Materials Science, 2000, 35(11), 2637. 17 Oguzie E E, Li Y, Wang F H. Journal of Colloid and Interface Science, 2007, 310(1), 90. 18 Farahati R, Mousavi-Khoshdel S M, Ghaffarinejad A, et al. Progress in Organic Coatings, 2020, 142, 105567. 19 Eliaz N. Materials, 2019, 12(3), 407. 20 Popova A, Christov M. Corrosion Science, 2006, 48(10), 3208. 21 Kobzar Y L, Fatyeyeva K. Chemical Engineering Journal, 2021, 425, 131480. 22 Markhali B P, Naderi R, Mahdavian M, et al. Corrosion Science, 2013, 75, 269. 23 Chaouiki A, Chafiq M, Rbaa M, et al. Coatings, 2020, 10(9), 811. 24 Tang Y, Zhang F, Hu S, et al. Corrosion Science, 2013, 74, 271. 25 Cao Z, Tang Y, Cang H, et al. Corrosion Science, 2014, 83, 292. 26 Jing C, Wang Z, Gong Y, et al. Corrosion Science, 2018, 138, 353. 27 Huang H, Fu Y, Mu X, et al. Applied Surface Science, 2020, 529, 147076. 28 Wei W C, Liu Z, Wei R Z, et al. Materials Reports, 2021, 35(12), 12196(in Chinese). 韦文厂, 刘峥, 魏润芝, 等. 材料导报, 2021, 35(12), 12196. 29 El-Katori E E, Nessim M I, Deyab M A, et al. Journal of Molecular Liquids, 2021, 337, 116467. 30 Haque J, Srivastava V, Chauhan D S, et al. Sustainable Chemistry and Pharmacy, 2020, 16, 100260. 31 Langová , Pánek P, Fojtášková J, et al. Transactions of the Indian Institute of Metals, 2018, 71(6), 1371. 32 Wang Z, Wang X, Zhang S, et al. Journal of Molecular Liquids, 2021, 341, 117402. 33 Nanthini R, Mutalib M I, Kurnia K A. Journal of Mechanical Engineering and Sciences, 2019, 13(1), 4434. 34 Singh P, Srivastava V, Quraishi M A. Journal of Molecular Liquids, 2016, 216, 164. 35 Kardas G, Solmaz R. Corrosion Reviews, 2006, 24(3-4), 151. 36 Chakravarthy M P, Mohana K N, Pradeep K C B. International Journal of Industrial Chemistry, 2014, 5(2), 1. 37 Ahmed S A, Awad M I, Althagafi I I, et al. Journal of Molecular Liquids, 2019, 291, 111356. 38 Likhanova N V, Dominguez-Aguilar M A, Olivares-Xometl O, et al. Corrosion Science, 2010, 52(6), 2088. 39 Farag A A, Eid A M, Shaban M M, et al. Journal of Molecular Liquids, 2021, 336, 116315. 40 Likhanova N V, Dominguez-Aguilar M A, Olivares-Xometl O, et al. Corrosion Science, 2010, 52(6), 2088. 41 Lozano I, Mazario E, Olivares-Xometl C O, et al. Materials Chemistry and Physics, 2014, 147(1-2), 191. 42 Fouda A E A S, Nawar N, Ismail M A, et al. Journal of Molecular Liquids, 2020, 312, 113267. 43 Praveen B M, Prasanna B M, Mallikarjuna N M, et al. Heliyon, 2021, 7(2), e06090. 44 Quadri T W, Olasunkanmi L O, Akpan E D, et al. Royal Society of Chemistry Advances, 2021, 11(4), 2462. 45 Chauhan D S, Mazumder M A J, Quraishi M A, et al. International Journal of Biological Macromolecules, 2020, 158, 127. 46 El-Hajjaji F, Ech-Chihbi E, Rezki N, et al. Journal of Molecular Liquids, 2020, 314, 113737. 47 Lgaz H, Salghi R, Bhat K S, et al. Journal of Molecular Liquids, 2017, 244, 154. 48 Nkuna A A, Akpan E D, Obot I B, et al. Journal of Molecular Liquids, 2020, 314, 113609. 49 Bousskri A, Anejjar A, Messali M, et al. Journal of Molecular Liquids, 2015, 211, 1000. 50 El Faydy M, Benhiba F, Lakhrissi B, et al. Journal of Molecular Liquids, 2019, 295, 111629. 51 Abd El-Lateef H M, Shalabi K, Abdelhamid A A. Journal of Molecular Liquids, 2021, 334, 116081. 52 Erami R S, Amirnasr M, Meghdadi S, et al. Corrosion Science, 2019, 151, 190. 53 Kannan P, Karthikeyan J, Murugan P, et al. Journal of Molecular Liquids, 2016, 221, 368. 54 Jiang L, Qiang Y, Lei Z, et al. Journal of Molecular Liquids, 2018, 255, 53. 55 Rbaa M, Benhiba F, Obot I B, et al. Journal of Molecular Liquids, 2019, 276, 120. 56 Zhang X, Li J, Zheng X, et al. International Journal of Electrochemical Science, 2020, 15(4), 3504. 57 Tan J, Guo L, Wu D, et al. International Journal of Electrochemical Science, 2020, 15(3), 1893. 58 Kannan P, Rao T S, Rajendran N. Journal of Molecular Liquids, 2016, 222, 586. 59 Hu P, Wu Z, Wang J, et al. Green Energy & Environment, 2020, 5(2), 214. 60 Shetty S K, Shetty A N. Journal of Molecular Liquids, 2017, 225, 426. 61 Bhaskaran, Pancharatna P D, Lata S, et al. Journal of Molecular Liquids, 2019, 278, 467. 62 Olasunkanmi L O, Mashuga M E, Ebenso E E. Surfaces and Interfaces, 2018, 12, 8. 63 Pourghasemi H A, Hosseinpour R M, Naderi R, et al. Journal of Mole-cular Liquids, 2021, 336, 116320. 64 Verma C, Quraishi M A, Obot I B, et al. Journal of Molecular Liquids, 2019, 287, 110972. 65 Arellanes-Lozada P, Díaz-Jiménez V, Hernández-Cocoletzi H, et al. Corrosion Science, 2020, 175, 108888. 66 Zaki E G, Abd-El-Raouf M, Elaraby A, et al. International Journal of Electrochemical Science, 2021, 16(3), 210374. 67 Cao S, Liu D, Ding H, et al. Journal of Molecular Liquids, 2019, 275, 729. 68 Qiang Y, Guo L, Li H, et al. Chemical Engineering Journal, 2021, 406, 126863. 69 Alamshany Z M, Ganash A A. Heliyon, 2019, 5(11), e02895. 70 Fadhil A A, Khadom A A, Liu H, et al. Journal of Molecular Liquids, 2019, 276, 503. 71 Jannat A R, Naderi R, Kowsari E, et al. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99, 18. 72 Zaky M T, Nessim M I, Deyab M A. Journal of Molecular Liquids, 2019, 290, 111230. 73 Zhang W, Ma R, Liu H, et al. Journal of Molecular Liquids, 2016, 222, 671. 74 Verma C, Olasunkanmi L O, Obot I B, et al. Royal Society of Chemistry Advances, 2016, 6(19), 15639. 75 Li H, Zhang S, Tan B, et al. Journal of Molecular Liquids, 2020, 305, 112789. 76 Feng L, Zhang S, Tao B, et al. Colloids and Surfaces B:Biointerfaces, 2020, 190, 110898. 77 Ye Y, Zhang D, Zou Y, et al. Journal of Cleaner Production, 2020, 264, 121682. 78 Hanza A P, Naderi R, Kowsari E, et al. Corrosion Science, 2016, 107, 96. 79 Abou-Dobara M I, Omar N F, Diab M A, et al. Materials Science and Engineering C, 2019, 103, 109727. 80 Zhou L, Zhang S, Tan B, et al. Journal of the Taiwan Institute of Chemical Engineers, 2020, 113, 253. 81 Dagdag O, Safi Z, Erramli H, et al. Journal of Molecular Liquids, 2019, 287, 110977. 82 Verma C, Ebenso E E, Quraishi M A, et al. Journal of Molecular Liquids, 2021, 334, 116441. 83 Rbaa M, Abousalem A S, Galai M, et al. Arabian Journal for Science and Engineering, 2021, 46(1), 257. 84 Verma C, Olasunkanrni L O, Ebenso E E, et al. Journal of Physical Chemistry C, 2016, 120(21), 11598. 85 El Faydy M, Lakhrissi B, Jama C, et al. Journal of Materials Research and Technology-Jmr&T, 2020, 9(1), 727. 86 Verma C, Olasunkanmi L O, Obot I B, et al. Royal Society of Chemistry Advances, 2016, 6(59), 53933. 87 Elsaeed S M, El Sayed H, Ashour H, et al. Royal Society of Chemistry Advances, 2018, 8(66), 37891. 88 Wang J, Luo J, Feng S, et al. Green Energy & Environment, 2016, 1(1), 43.