Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 21060035-10    https://doi.org/10.11896/cldb.21060035
  无机非金属及其复合材料 |
金属有机框架材料吸附重金属离子和放射性核素的研究进展
李子凡1,2, 张志宾1,2,*, 董志敏1,2, 刘云海1,2,*
1 东华理工大学江西省合成化学重点实验室,南昌 330013
2 东华理工大学核资源与环境国家重点实验室,南昌 330013
Research Progress on Adsorption of Heavy Metal Ions and Radionuclides by Metal-Organic Framework Materials
LI Zifan1,2, ZHANG Zhibin1,2,*, DONG Zhimin1,2, LIU Yunhai1,2,*
1 Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, China
2 State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
下载:  全 文 ( PDF ) ( 7094KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属有机框架(MOFs)是一类无机-有机配位的多孔材料。与传统吸附剂相比,MOFs具有结构可设计性、功能多样性、比表面积大和孔隙率高等优点,可通过前合成和后修饰法调节孔径大小、引入特定官能团或活性位点,实现快速、高效地分离水中的重金属离子和放射性核素,对资源回收和环境修复意义重大。本文详述了MOFs吸附砷、铬和汞等重金属离子,吸附铀和锝等放射性核素的研究现状及作用机理,总结了提高MOFs吸附性能的方法,提出了MOFs作为重金属和放射性核素吸附剂时亟需解决的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李子凡
张志宾
董志敏
刘云海
关键词:  金属有机框架材料  重金属离子  放射性核素  吸附    
Abstract: Metal-organic frameworks (MOFs)are a kind of porous materials by combining metal nodes with organic ligands by strong bonds. Compared with the traditional adsorption materials, MOFs have various advantages, such as adjustable structural, functional diversity, large specific surface area and high porosity. Another unique advantage is that the pores size can be adjusted, and the specific functional groups and active sites can be modified by in situ synthesis or post-modification to obtain the efficient and selective adsorption of different heavy metals and radionuclides from wastewater, which is of great significance to resource recycling and environmental remediation. In this paper, the latest research progresses and corresponding adsorption mechanisms for the adsorption of heavy metals (As, Cr, Hg, etc.)and radionuclides (U, Tc, etc.)are described in detail. And the methods of improving the adsorption of MOFs are summarized. Furthermore, the challenges and problems of MOFs as the adsorbents of heavy metals and radionuclides are proposed.
Key words:  metal-organic frameworks material    heavy metal ion    radionuclide    adsorption
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  TQ424  
  X591  
基金资助: 国家自然科学基金(U2167223;21866004;21866003;22066003);国防基础科研项目(JCKY2019401C004);江西省合成化学重点实验室开放基金(JXSC202012).
通讯作者:  * 张志宾,东华理工大学化学生物与材料科学学院副院长、教授、博士研究生导师,青年井冈学者,江西省杰出青年基金获得者。主要从事放射性核素吸附分离、可见光催化等领域的科研工作。主持国家自然科学基金5项、江西省自然科学基金等省部级项目10余项,发表SCI检索学术论文60余篇。zhbzhang@ecut.edu.cn
刘云海,博士,二级教授,现任东华理工大学副校长。江西省“百千万人才工程”和国土资源部杰出青年科技人才培养计划入选者,江西省主要学科学术与技术带头人,获得2013年度江西省青年五四奖章,享受国务院政府特殊津贴。主要从事放射性核素吸附分离与污染治理等领域的科研工作,近年来,主持国家自然科学基金5项、江西省自然科学基金等其他省部级项目10余项,在Environ.Sci.Technol.、Appl.Catal.B Environ.、Small、Chem.Eng.J、J Hazard.Mater.等高水平期刊以第一作者或通信作者发表SCI收录学术论文90余篇,出版专著1部。yhliu@ecut.edu.cn   
作者简介:  李子凡,2022年6月毕业于东华理工大学,获得化学工程硕士学位。现为东华理工大学博士研究生,在刘云海教授和张志宾教授的指导下进行研究。目前主要研究领域为光催化和六价铀的分离。
引用本文:    
李子凡, 张志宾, 董志敏, 刘云海. 金属有机框架材料吸附重金属离子和放射性核素的研究进展[J]. 材料导报, 2023, 37(12): 21060035-10.
LI Zifan, ZHANG Zhibin, DONG Zhimin, LIU Yunhai. Research Progress on Adsorption of Heavy Metal Ions and Radionuclides by Metal-Organic Framework Materials. Materials Reports, 2023, 37(12): 21060035-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060035  或          http://www.mater-rep.com/CN/Y2023/V37/I12/21060035
1 Li J, Wang X X, Zhao G X, et al. Chemical Society Reviews, 2018, 47 (7), 2322.
2 Zhang Z B, Liu C, Dong Z M, et al. Applied Surface Science, 2020, 520, 146352.
3 Dong Z M, Zhang Z B, Zhou R Z, et al. Chemical Engineering Journal, 2020, 386, 123944.
4 Zhang Z B, Dong Z M, Wang X X, et al. Chemical Engineering Journal, 2019, 370, 1376.
5 Tang C C, Wang S T, Huang C X, et al. Chemical Industry and Engineering Progress, 2022, 41(6), 3263 (in Chinese).
唐朝春, 王顺藤, 黄从新, 等. 化工进展, 2022, 41(6), 3263.
6 Kumar P, Pournara A, Kim K H, et al. Progress in Materials Science, 2017, 86, 25.
7 Yuan Q, Wang Y L, Gu T Y, et al. Shandong Chemical Industry, 2021, 50(11), 58 (in Chinese).
袁泉, 王亚伦, 顾田瑜, 等. 山东化工, 2021, 50(11), 58.
8 Chen Q, Wang W T, Zhang Z P, et al. Chemical Industry and Enginee-ring Progress, 2021, 40 (S2), 241 (in Chinese).
陈琦, 王文涛, 张志鹏, 等. 化工进展, 2021, 40(S2), 241.
9 Wang C H, Liu X L, Chen J P, et al. Nature, 2015, 5, 16613.
10 Zu M, Xu H T, Xie W, et al. Chemical Industry and Engineering Progress, 2022, 41(8), 4254 (in Chinese).
祖梅, 许海涛, 谢炜, 等. 化工进展, 2022, 41(8), 4254.
11 Li X Y, Lyu S W, Sun S, et al. West China Journal of Pharmaceutical Sciences, 2014, 29(3), 342 (in Chinese).
李秀岩, 吕邵娃, 孙爽, 等. 华西药学杂志, 2014, 29(3), 342.
12 Ni M J, Zhao P C, Xie Y X, et al. Journal of Analytical Science, 2021, 37(4), 515 (in Chinese).
倪美君, 赵鹏程, 谢轶羲, 等. 分析科学学报, 2021, 37(4), 515.
13 Zhang Z W, Guo R T, Qin Y, et al. Materials Reports, 2021, 35 (21), 21058 (in Chinese).
张中伟, 郭瑞堂, 秦阳, 等. 材料导报, 2021, 35 (21), 21058.
14 Zhu B J, Yu X Y, Jia Y, et al. The Journal of Physical Chemistry C, 2012, 116 (15), 8601.
15 Vu T A, Le G H, Dao C D, et al. RSC Advances, 2015, 5 (7), 5261.
16 Li J, Wu Y N, Li Z, et al. Water Science and Technology, 2014, 70 (8), 1391.
17 Cai J H, Wang X Y, Zhou Y, et al. Physical Chemistry Chemical Physics, 2016, 18 (16), 10864.
18 Li J, Wu Y N, Li Z H, et al. The Journal of Physical Chemistry C, 2014, 118 (47), 27382.
19 Li Z Q, Yang J C, Sui K W, et al. Materials Letters, 2015, 160, 412.
20 Sun J Q, Zhang X B, Zhang A P, et al. Journal of Environmental Sciences, 2018, 80, 197.
21 Yu W T, Luo M B, Yang Y X, et al. Journal of Solid State Chemistry, 2019, 269, 264.
22 Folens K, Leus K, Nicomel N R, et al. European Journal of Inorganic Chemistry, 2016, 2016 (27), 4395.
23 Yang J C, Yin X B. Nature, 2017, 7, 40955.
24 Jung B K, Jun J W, Hasan Z, et al. Chemical Engineering Journal, 2015, 267, 9.
25 Li B, Zhu X Y, Hu K L, et al. Journal of Hazardous Materials, 2016, 302, 57.
26 Xu R M, Ji Q H, Zhao P, et al. Journal of Materials Chemistry A, 2020, 8 (16), 7870.
27 Liu B, Jian M, Liu R, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 481, 358.
28 Yang Q L, Kang S Z, Chen H, et al. Desalination, 2011, 266 (1-3), 149.
29 Shi P F, Zhao B, Xiong G, et al. Chemical Communications, 2012, 48 (66), 8231.
30 Fu H R, Xu Z X, Zhang J. Chemistry of Materials, 2014, 27 (1), 205.
31 Ma L, Yang J, Lu B B, et al. Inorganic Chemistry, 2018, 57 (18), 11746.
32 Li L L, Feng X Q, Han R P, et al. Journal of Hazardous Materials, 2017, 321, 622.
33 Li C P, Zhou H, Wang S, et al. Chemical Communications, 2017, 53 (66), 9206.
34 Fu H R, Wang N, Qin J H, et al. Chemical Communications, 2018, 54 (82), 11645.
35 Zhu K R, Chen C L, Xu H, et al. ACS Sustainable Chemistry & Engineering, 2017, 5 (8), 6795.
36 Ding B, Guo C, Liu S X, et al. RSC Advances, 2016, 6 (40), 33888.
37 Lupa L, Maranescu B, Visa A. Separation Science and Technology, 2017, 53 (7), 1017.
38 Guo M M, Guo H D, Liu S Y, et al. RSC Advances, 2017, 7(80), 51021.
39 Nasrollahpour A, Moradi S E. Microporous and Mesoporous Materials, 2017, 243, 47.
40 Rapti S, Sarma D, Diamantis S A, et al. Journal of Materials Chemistry A, 2017, 5 (28), 14707.
41 Qiao W, Yang G, Zhu Z, et al. Chemical Engineering Journal, 2022, 430, 132655.
42 Li L, Chen B B, He J L, et al. China Ceramics, 2020, 56 (4), 13 (in Chinese).
李林, 陈蓓蓓, 何锦林, 等. 中国陶瓷, 2020, 56 (4), 13.
43 Zhou X P, Xu Z T, Zeller M, et al. Chemical Communications, 2009(36), 5439.
44 He J, Yee K K, Xu Z T, et al. Chemistry of Materials, 2011, 23 (11), 2940.
45 Hou Y L, Yee K K, Wong Y L, et al. Journal of the American Chemical Society, 2016, 138 (45), 14852.
46 Li M Q, Wong Y L, Lum T S, et al. Journal of Materials Chemistry A, 2018, 6 (30), 14566.
47 Yang P, Shu Y F, Zhuang Q X, et al. Chemical Communications, 2019, 55 (86), 12972.
48 Lin D W, Liu X, Huang R L, et al. Chemical Communications, 2019, 55 (47), 6775.
49 Ke F, Qiu L G, Yuan Y P, et al. Journal of Hazardous Materrials, 2011, 196, 36.
50 Liu T, Che J X, Hu Y Z, et al. Chemistry-A European Journal, 2014, 20 (43), 14090.
51 Fu L, Wang S X, Lin G, et al. Journal of Hazardous Materials, 2019, 368, 42.
52 Zhao M H, Huang Z, Wang S X, et al. ACS Applied Materials & Interfaces, 2019, 11 (50), 46973.
53 Fang Q R, Yuan D Q, Sculley J, et al. Inorganic Chemistry, 2010, 49 (24), 11637.
54 Tahmasebi E, Masoomi M Y, Yamini Y, et al. Inorganic Chemistry, 2015, 54 (2), 425.
55 Wang Y, Ye G Q, Chen H H, et al. Journal of Materials Chemistry A, 2015, 3 (29), 15292.
56 Peng Y, Huang H L, Zhang Y X, et al. Nature Communications, 2018, 9 (1), 187.
57 Boix G, Troyano J, Garzon-Tovar L, et al. ACS Applied Materials & Interfaces, 2020, 12 (9), 10554.
58 Wang K, Gu J, Yin N. Industrial and Engineering Chemistry Research, 2017, 56 (7), 1880.
59 Wang G, He C T, Huang R, et al. Journal of the American Chemical Society, 2020, 142 (45), 19339.
60 Zhang Z B, Huang J, Chen H J, et al. Journal of East China University of Technology, 2020, 43 (2), 187 (in Chinese).
张志宾, 黄剑, 陈海军, 等. 东华理工大学学报, 2020, 43 (2), 187.
61 Zhang Z B, Zhang H Y, Qiu Y F, et al. Scientia Sinica(Chimica), 2019, 49 (1), 195 (in Chinese).
张志宾, 张昊岩, 邱燕芳, 等. 中国科学:化学, 2019, 49 (1), 195.
62 Carboni M, Abney C W, Liu S B, et al. Chemical Science, 2013, 4 (6), 2396.
63 Bai Z Q, Yuan L Y, Zhu L, et al. Journal of Materials Chemistry A, 2015, 3 (2), 525.
64 Liu W, Dai X, Bai Z L, et al. Environmental Science & Technology, 2017, 51 (7), 3911.
65 Zhang L, Wang L L, Gong L L, et al. Journal of Hazardous Materials, 2016, 311, 30.
66 Yuan L Y, Tian M, Lan J H, et al. Chemical Communications, 2018, 54 (4), 370.
67 Su S Z, Che R, Liu Q, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 547, 73.
68 Min X, Yang W T, Hui Y F, et al. Chemical Communications, 2017, 53 (30), 4199.
69 Yang P P, Liu Q, Liu J Y, et al. Journal of Materials Chemistry A, 2017, 5 (34), 17933.
70 He L W, Bai X X, Li K F, et al. Journal of Nuclear and Radiochemistry, 2020, 42 (6), 563 (in Chinese).
何林玮, 白尧尧, 李坤锋, 等. 核化学与放射化学, 2020, 42 (6), 563.
71 Sheng D P, Zhu L, Xu C, et al. Environmental Science & Technology, 2017, 51 (6), 3471.
72 Zhu L, Xiao C L, Dai X. Environmental Science & Technology Letters, 2017, 4 (7), 316.
73 Fei H H, Bresler M R, Oliver S R. Journal of the American Chemical Society, 2011, 133 (29), 11110.
74 Ma J, Wang C C, Zhao Z X, et al. Polyhedron, 2021, 202, 115218.
75 Li D, Shustova N B, Martin C R, et al. Journal of Environmental Radioacti-vity, 2020, 222, 106372.
76 Luo B C, Yuan L Y, Chai Z F, et al. Journal of Radioanalytical and Nuclear Chemistry, 2015, 307 (1), 269.
77 Yang W, Bai Z Q, Shi W Q, et al. Chemical Communications, 2013, 49 (88), 10415.
78 Duan C X, Li J X, Yang P F, et al. Journal of Radioanalytical and Nuclear Chemistry, 2019, 323 (1), 317.
79 Öztürk M, Zorer Ö S, Gülcan M. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 609, 125663.
80 Wu Y H, Li B Y, Wang X X, et al. Chemical Engineering Journal, 2019, 378, 122105.
81 Li J Q, Gong L L, Feng X F, et al. Chemical Engineering Journal, 2017, 316, 154.
82 Amini A, Khajeh M, Oveisi A R, et al. Journal of Industrial and Engineering Chemistry, 2021, 93, 322.
83 Zhang H, Xue J H, Hu N, et al. Journal of Radioanalytical and Nuclear Chemistry, 2015, 308 (3), 865.
84 Banerjee D, Xu W Q, Nie Z M, et al. Inorganic Chemistry, 2016, 55 (17), 8241.
85 Zhu L, Sheng D P, Xu C, et al. Journal of the American Chemical Society, 2017, 139 (42), 14873.
86 Fei H H, Rogow D L, Oliver S R J. Journal of the American Chemical Society, 2010, 132 (20), 7202.
87 Howarth A J, Katz M J, Wang T C, et al. Journal of the American Che-mical Society, 2015, 137 (23), 7488.
88 Li J, Liu Y, Wang X X, et al. Chemical Engineering Journal, 2017, 330, 1012.
89 Peng Y G, Huang H L, Liu D H, et al. ACS Applied Materials & Interfaces, 2016, 8 (13), 8527.
90 Zhang N, Yuan L Y, Guo W L, et al. ACS Applied Materials & Interfaces, 2017, 9 (30), 25216.
91 Wang Y L, Liu Z Y, Li Y X, et al. Journal of the American Chemical Society, 2015, 137 (19), 6144.
92 Aguila B, Banerjee D, Nie Z, et al. Chemical Communications, 2016, 52 (35), 5940.
93 Naeimi S, Faghihian H. Separation and Purification Technology, 2017, 175, 255.
[1] 周爱玲, 贾爱忠, 赵新强, 王延吉. 污水重金属离子选择性吸附的研究进展[J]. 材料导报, 2023, 37(9): 21110052-10.
[2] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[3] 李娅, 马飞跃, 张明, 涂行浩, 杜丽清. 不同尺寸改性果胶基磁性微球的制备及对Pb2+吸附性能的研究[J]. 材料导报, 2023, 37(9): 21050165-8.
[4] 李贞, 刘加平, 乔敏, 于诚, 谢惟肖, 陈俊松. 基于减水剂吸附行为的再生微粉-水泥浆体黏度调控机理研究[J]. 材料导报, 2023, 37(8): 21090090-7.
[5] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[6] 吴肖, 魏新莉, 赵栋, 翟文翔, 李旺. 栓皮栎软木分级多孔活性炭的制备及对亚甲基蓝的吸附[J]. 材料导报, 2023, 37(8): 21090088-7.
[7] 施宏玉, 邢冀琦, 薛培宏, 刘娟. 分子尺度下研究海洋污损生物的吸附机理[J]. 材料导报, 2023, 37(7): 21120126-7.
[8] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[9] 宋学锋, 陆伟宁. 转化方式对粉煤灰地聚物原位转化沸石及其Pb2+吸附性能的影响[J]. 材料导报, 2023, 37(6): 21070249-7.
[10] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[11] 石现兵, 王涛, 吕明泽, 赵晋, 韩振邦. 树枝状PVDF纳米纤维膜负载TiO2吸附-光催化降解染料废水[J]. 材料导报, 2023, 37(4): 21060080-6.
[12] 鲁浩, 杨强, 孔赟. 金属有机框架材料对水体中有机污染物的吸附去除及氧化降解研究进展[J]. 材料导报, 2023, 37(4): 22060239-13.
[13] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[14] 宋丽红, 张敏刚, 曹翔宇, 郭锦, 闫晓燕. S-N掺杂聚乙二醇用于锂硫电池的第一性原理研究[J]. 材料导报, 2023, 37(3): 21030173-5.
[15] 刘珊, 廖磊, 魏莉, 李炫妮, 曹磊, 王鑫. 壳聚糖交联腐殖酸凝胶球吸附渗滤液中重金属离子研究[J]. 材料导报, 2023, 37(3): 21040317-8.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed