Please wait a minute...
材料导报  2023, Vol. 37 Issue (10): 21070075-6    https://doi.org/10.11896/cldb.21070075
  无机非金属及其复合材料 |
古建筑修缮中粉化石灰的占比对灰浆性能的影响
张典1, 王辉1, 陈绍华2,3, 王菊琳2,3,*
1 故宫博物院,北京 100009
2 北京化工大学材料科学与工程学院,北京 100029
3 文物保护领域科技评价研究国家文物局重点科研基地,北京 100029
Influence of the Ratio of Chalked Lime on the Performance of Pastes in the Restoration of Ancient Buildings
ZHANG Dian1, WANG Hui1, CHEN Shaohua2,3, WANG Julin2,3,*
1 The Palace Museum, Beijing 100009, China
2 School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
3 Key Research Base of State Administration of Cultural Heritage for Evaluation of Science and Technology in Cultural Relics Protection Field, Beijing 100029, China
下载:  全 文 ( PDF ) ( 23216KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 古建筑修缮现场,块状生石灰原材料粉化变质不可避免,实际施工中也难免掺入粉化石灰。为了探究粉化变质石灰的占比对灰浆性能的影响,首先利用X射线衍射(XRD)、X射线荧光光谱(XRF)和热重分析(TG)对块状生石灰及粉化石灰的纯度及变质程度进行了定性及定量分析,然后以相同水灰比、不同粉化石灰占比制样,进行性能对比及机理研究。结果表明:石灰原材料纯度高,块状生石灰未变质,为纯CaO;粉化石灰部分变质,其中CaCO3含量为17.93%。粉化石灰占比增加降低了试样的表面硬度,对养护28 d的试样力学强度影响小,对养护60 d的灰浆试样力学强度有增大趋势,粉化石灰占比达到50%时降低了灰浆的耐水性、抗冻性。干燥表观密度、显气孔率、吸水率、碳化深度及扫描电镜(SEM)结果分析得出性能差异主要是由于粉化石灰胶结性降低,以及制样时粉灰所需水少,相同水灰比条件下剩余游离水多,使得粉灰试样致密度低、孔隙率及吸水率大,从而加快了碳化。工程实际使用中可将粉化石灰占比控制在40%以内。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张典
王辉
陈绍华
王菊琳
关键词:  古建筑修缮  传统灰浆  块状生石灰  粉化石灰  气硬性石灰  碳酸化    
Abstract: At the restoration site of ancient building, it is inevitable that the raw material of lumpy quicklime will be chalked and deteriorated, and it is also inevitable to mix chalked lime in the actual construction. In order to explore the influence of the ratio of chalked metamorphic lime on the performance of paste, the purity and metamorphism degree of lumpy quicklime and chalked lime were qualitatively and quantitatively analyzed by X-ray diffraction (XRD), X-ray fluorescence spectrum (XRF) and thermogravimetric analysis (TG). Then samples were prepared with the same water-binder ratio and different proportions of chalked lime for performance comparison and mechanism research. The results show that the raw material lime has high purity, the lumpy quicklime is pure CaO without metamorphism. The chalked lime was partially deteriorated, and the content of CaCO3 was 17.93%. The increase in the ratio of chalked lime reduces the surface hardness of the sample, has little effect on the mecha-nical strength of the sample cured for 28 days, and there is a tendency to increase the mechanical strength of the sample after curing for 60 days. When the proportion of chalked lime reaches 50%, the water resistance and freeze-thaw resistance of sample are reduced. According to the analysis of dry apparent density, porosity, water absorption, carbonation depth and scanning electron microscope (SEM) results, it is concluded that the difference in performance is mainly due to the decrease of cementation of chalked lime, less water needed for sample preparation, and more residual free water in the same water-binder ratio, which leads to low density, high porosity and water absorption of samples containing chalked lime, thus accelerating carbonation. In the actual construction, the ratio of chalked lime should be controlled within 40%.
Key words:  ancient buildings restoration    traditional paste    lumpy quicklime    chalked lime    air set lime    carbonation
出版日期:  2023-05-25      发布日期:  2023-05-23
ZTFLH:  TU526  
基金资助: 故宫博物院2019年度科研课题经费(KT2019-11)
通讯作者:  *王菊琳,北京化工大学材料科学与工程学院教授、博士研究生导师。1989年南京化工学院(南京工业大学)腐蚀与防护专业本科毕业,2000年北京化工大学材料学专业硕士毕业,2004年北京化工大学材料物理博士毕业后留校工作至今。目前主要从事文物保护、材料劣化机理研究。发表论文80余篇,包括在Corrosion Science、Applied Surface Science、Rare Metals、Construction and Building Materials等期刊上发表的论文。julinwang@126.com   
作者简介:  张典,2008年中国戏曲学院设计专业本科毕业,2019年清华大学建筑学院研究生毕业。现为故宫博物院副研究馆员。目前主要从事古建筑修缮保护相关领域的研究和实践工作。发表论文20余篇,包括《故宫养心殿墙体木柱缺陷状况无损检测研究》《故宫古建筑外檐装修异形构件信息记录与应用研究》等,参与编制《中华人民共和国文物保护行业标准—文物建筑维修基本材料》《文物建筑施工组织设计编写规范》等。
引用本文:    
张典, 王辉, 陈绍华, 王菊琳. 古建筑修缮中粉化石灰的占比对灰浆性能的影响[J]. 材料导报, 2023, 37(10): 21070075-6.
ZHANG Dian, WANG Hui, CHEN Shaohua, WANG Julin. Influence of the Ratio of Chalked Lime on the Performance of Pastes in the Restoration of Ancient Buildings. Materials Reports, 2023, 37(10): 21070075-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070075  或          http://www.mater-rep.com/CN/Y2023/V37/I10/21070075
1 Shan J X. Palace Museum Journal, 2015, 181(5), 6 (in Chinese).
单霁翔. 故宫博物院院刊, 2015, 181(5), 6.
2 Xu S Q. Study of hydration and carbonation mechanism of natural hydraulic lime and modification of its mortars. Master's Thesis, Beijing University of Chemical Technology, China, 2015 (in Chinese).
徐树强. 天然水硬性石灰固化机理及其砂浆改性研究. 硕士学位论文, 北京化工大学, 2015.
3 Lan M Z, Nie S, Wang J F, et al. Materials Reports, 2019, 33(9), 1512 (in Chinese).
兰明章, 聂松, 王剑锋, 等. 材料导报, 2019, 33(9), 1512.
4 Luo K. Research on the preparation and performance of natural hydraulic lime. Master's Thesis, Southwest University of Science and Technology, China, 2020 (in Chinese).
罗凯. 水硬性石灰的设计制备及性能天然研究. 硕士学位论文, 西南科技大学, 2020.
5 Xu S Q, Wang L L, Ma Q L, et al. Sciences of Conservation and Archaeo-logy, 2017, 29(4), 1 (in Chinese).
徐树强, 王乐乐, 马清林, 等. 文物保护与考古科学, 2017, 29(4), 1.
6 Yang J L, Song W W, Wang L G, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(8), 2633 (in Chinese).
杨建林, 宋文伟, 王来贵, 等. 硅酸盐通报, 2018, 37(8), 2633.
7 Liu X B. Investigation of the chemical characteristics and bonding mec-hanism of Chinese traditional lime mortars, Master's Thesis, Zhejiang University, China, 2015 (in Chinese).
刘效彬. 中国传统灰浆的化学组成特征及粘结机理研究. 硕士学位论文, 浙江大学, 2015.
8 Lucía Garijo, Xiaoxin Zhang, Gonzalo Ruiz, et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2019.117573.
9 Zhang Q, Li B, Zeng Q, et al. Advances in Cement Research, 2019, 32(8), 343.
10 Liang B, Wang J L. Science Technology and Engineering, 2019, 19(35), 322 (in Chinese).
梁波, 王菊琳. 科学技术与工程, 2019, 19(35), 322.
11 Sánchez J A, Barrios J, Barrios A, et al. Materiales de Construccion, 1997, 47(245), 17.
12 Xu S, Wang J, Jiang Q, et al. Journal of Cleaner Production, 2016, 119, 118.
13 Sandra Cunha, José Barroso Aguiar, Victor Ferreira, et al. Advanced Materials Research, 2013, 687, 255.
14 Arandigoyen M, Pérez Bernal J L, Bello López M A, et al. Applied Surface Science, 2005, 252(5), 1449.
15 Anna Arizzi, Javier Martínez Martínez, Giuseppe Cultrone, et al. Key Engineering Materials, 2011, 465, 483.
16 Sung-Hoon Kang, Yang-Hee Kwon, Juhyuk Moon. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2020.118749.
[1] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[2] 任国宏, 廖洪强, 程芳琴, 闫志华. 发泡混凝土碱浸试块碳酸化增强固碳特性研究[J]. 材料导报, 2019, 33(Z2): 300-303.
[3] 赵红涛, 王树民, 刘志江, 张曼. 磷石膏矿化固定CO2制备高纯高白CaCO3[J]. 材料导报, 2019, 33(18): 3031-3034.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed