Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 22010161-9    
  无机非金属及其复合材料 |
基于热成像的CFRP损伤检测与演化规律研究综述
李胤, 宋远佳, 刘春华
中国空气动力研究与发展中心设备设计与测试技术研究所,四川 绵阳 621000
Review on the Use of Infrared Thermography for the Damage Detection and Evolution of CFRP
LI Yin, SONG Yuanjia, LIU Chunhua
Facility Design and Instrumentation Institute, China Aerodynamics Research and Development Center, Mianyang 621000, Sichuan, China
下载:  全 文 ( PDF ) ( 12991KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在碳纤维增强型复合材料(CFRP)结构设计和使用过程中,损伤检测与演化规律研究已成为关注的焦点,而热成像作为一种高效的无损检测技术,具有响应速度快、检测结果直观、可实时监测等特点,蕴含巨大的发展潜力。本文总结了CFRP常用的无损检测方法,综述了主/被动热成像技术在CFRP损伤检测与演化规律中的研究现状,探讨了主/被动热成像在CFRP检测中的适用性,并针对该技术在CFRP中的应用发展提出了几点思考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李胤
宋远佳
刘春华
关键词:  CFRP  热成像技术  无损检测  损伤演化    
Abstract: The damage detection and evolution of carbon fiber reinforced polymer (CFRP), has attracted amounts of attentions during its design and use. Infrared thermography, acted as an effective nondestructive detection technology, is in possession of great potential for development due to its advantages of high speed response, visual detection results and on-line monitoring. In this paper, the current nondestructive detection methods for CFRP are summarized and the use of active/passive infrared thermography on damage detection and evolution of CFRP is reviewed. On this basis, the applicability of active/passive infrared thermography on the damage detection for CFRP is discussed. Finally, several suggestions on future work of infrared thermography for the CFRP are proposed.
Key words:  CFRP    infrared thermography    nondestructive detection    damage evolution
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TB332  
基金资助: 国家自然科学基金(52005495);中国空气动力研究与发展中心基础和前沿技术研究基金(PJD20200223)
通讯作者:  songyuanjia@163.com   
作者简介:  李胤,2012年6月、2014年12月、2019年6月分别于第二炮兵工程大学、第二炮兵工程大学和火箭军工程大学获得工学学士学位、硕士学位和博士学位。现为中国空气动力研究与发展中心设备设计与测试技术研究所工程师。目前主要研究领域为飞行器结构检测与性能评估。发表论文10余篇,包括Composite Structures,International Journal of Fatigue,NDT & E International,Infrared Physics & Technology,IEEE Sensors Journal等。
宋远佳,中国空气动力研究与发展中心设备设计与测试技术研究所副研究员。2012年6月第二炮兵工程大学航空宇航科学与技术专业博士毕业。目前主要从事风洞结构设计、飞行器结构检测与性能评估等方面的研究工作。发表论文20余篇,包括IEEE Sensors Journal,Thermal Science,Experimental Techniques等。
引用本文:    
李胤, 宋远佳, 刘春华. 基于热成像的CFRP损伤检测与演化规律研究综述[J]. 材料导报, 2022, 36(Z1): 22010161-9.
LI Yin, SONG Yuanjia, LIU Chunhua. Review on the Use of Infrared Thermography for the Damage Detection and Evolution of CFRP. Materials Reports, 2022, 36(Z1): 22010161-9.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/22010161
1 Soutis C. Progress in Aerospace Sciences, 2005, 41(2), 143.
2 李威, 郭权锋. 中国光学, 2011, 4(3), 201.
3 赵丽滨, 龚愉, 张建宇. 航空学报, 2019, 40(1), 522509.
4 Salvetti M, Gilioli A, Sbarufatti C, et al. Composites Part B, Enginee-ring, 2018, 142, 47.
5 Tuo H, Lu Z, Ma X, et al. Composites Part B, Engineering, 2019, 163, 642.
6 Li L, Sun L, Wang T, et al. Aerospace Science and Technology, 2019, 84, 995.
7 Tie Ying, Hou Yuliang, Li Cheng, et al. Composite Structures, 2018, 190, 179.
8 Li Yin ,Zhang Wei ,Yang Zhengwei , et al. International Journal of Fatigue, 2018, 112, 130.
9 Palazotta A, Maddux G E, Horban B. Experimental Mechanics, 1989, 29(2), 144.
10 Brooks C R, Mcgill B L. Materials Characterization, 1994, 33(3), 195.
11 程志虎, 王怡之, 陈伯真. 中国机械工程, 1998, 9(3), 60.
12 李国华, 吴淼. 现代无损检测与评价, 化学工业出版社, 2008, pp. 3.
13 耿荣生, 朱绍华, 刘晶晶. 2015中国无损检测年度报告, 无损检测, 2016.
14 耿荣生, 朱绍华, 刘晶晶. 2016中国无损检测年度报告, 无损检测, 2017.
15 耿荣生, 朱绍华, 刘晶晶. 2017中国无损检测年度报告, 无损检测, 2018.
16 Allgaier M W. Materials Evaluation, 1991, 49(9), 1186.
17 Sjogren A, Krasnikovs A, Varna J. Composites Part A, Applied Science and Manufacturing, 2001, 32(9), 1237.
18 Birt E A. Insight-Non-Destructive Testing and Condition Monitoring, 2000, 42(3), 152.
19 Valleau A R. Materials Evaluation, 1990, 48(2), 230.
20 Liu N, Zhu Q, Wei Q, et al. Key Engineering Materials, 1999, 167, 43.
21 Von Ramm O T, Smith S W. IEEE Transactions on Biomedical Enginee-ring, 1983, 30(8), 438.
22 Komsky I N. American Institute of Physics, 2004, 713.
23 Vary A. Materials Evaluation, 1982, 40(6), 95.
24 王增勇, 汤光平, 李建文, 等.无损检测, 2010, 32(7), 504.
25 Lei L, Ferrarini G, Bortolin A, et al. NDT & E International, 2019, 102, 137.
26 Deane S, Avdelidis N P, Castanedo C I, et al. Infrared Physics & Technology, 2019, 97, 456.
27 Fernando W D R, Tantrigoda D A, Rosa S R D, et al. Infrared Physics & Technology, 2019, 98, 89.
28 Shanmugam C, Sekaran E C. Infrared Physics & Technology, 2019, 97, 187.
29 Konstantopoulos S, Tonejc M, Maier A, et al. Journal of Reinforced Plastics & Composites, 2015, 34(12), 1015.
30 Yang R, He Y. Infrared Physics & Technology, 2016, 75, 26.
31 Maldague X P V. Materials Evaluation, 2002, 60(9), 1060.
32 Meola C, Carlomagno G M. Applied Physics A, 2009, 96, 759.
33 Meola C, Carlomagno G M. Composites Part A, Applied Science & Manufacturing, 2010, 41, 1839.
34 Meola C, Carlomagno G M. International Journal of Impact Engineering, 2014, 67, 1.
35 Meola C, Boccardi S, Carlomagno G M, et al. Composite Structures, 2015, 134, 845.
36 Meola C, Boccardi S, Boffa N D, et al. Composite Structures, 2016, 152, 746.
37 Meola C, Boccardi S, Carlomagno G M, et al. NDT & E International, 2017, 85, 34.
38 Jakubczak P, Bienias J, Surowska B. Compoistes Theory and Practice, 2014, 14, 219.
39 Boccardi S, Carlomagno G M, Boffa N D, et al. Polymer Engineering and Science, 2017, 57(7), 657.
40 Li X L, Zeng Z, Shen J L, et al. Infrared Physics & Technology, 2018, 89, 1.
41 He Y Z, Chen S, Zhou D Q, et al. IEEE Transactions on Industrial Informatics, 2018, 14(12), 5575.
42 He Y, Pan M, Luo F, et al. NDT & E International, 2011, 44(4), 344.
43 Jiao D C, Shi W X, Liu Z W, et al. Journal of Nondestructive Evaluation, 2018, 37(30), 1.
44 Milne A J M, Reynolds W N.In: Thermosense Vii, Thermal Infrared Sensing for Diagnostics & Control. Cambridge, 1985, pp. 119.
45 Vavilov V P, Marinetti S, Grinzato Z G, et al.In: Thermosense XX, Orlando, 1998, pp. 275.
46 Ball R J, Almond D P. NDT & E International, 1998, 31(3), 165.
22010161-847 Avdelidis N P, Ibarracastanedo C, Marioliriga Z P, et al.In, Thermosense XXX, Orlando, 2008, pp. 37.
48 李晓霞, 伍耐明, 段玉霞, 等.复合材料学报, 2010, 27(6),88.
49 Kuhn E, Valot E, Herve P. Composite Structures, 2012, 94(3), 1155.
50 陈名华, 杨小林, 涂明武, 等. 机电产品开发与创新, 2014, 27(2), 87.
51 Kim G, Lee K S, Hur H, et al. Journal of the Korean Society for Nondestructive Testing, 2015, 35(3), 206.
52 熊娟, 袁丽华, 邬冠华.激光与红外, 2016, 46(9), 1085.
53 Adams R D, Cawley P,Pye C J, et al. Journal of Mechanical Engineering Science, 1978, 20(2), 93.
54 Barden T J, Almond D P, Morbidini M, et al. Insight - Non-Destructive Testing and Condition Monitoring, 2006, 48(2), 90.
55 Mabrouki F, Thomas M, Genest M, et al. NDT & E International, 2009, 42, 345.
56 Polimeno U, Meo M, Almond D P, et al. Applied Composite Materials, 2010, 17, 481.
57 王成亮, 杨波.激光与红外, 2010, 40(4), 376.
58 Derusova D A, Vavilov V P, Pawar S S. Materials Science and Enginee-ring, 2015, 81(1), 012084.
59 Yang B, Huang Y, Cheng L. Infrared Physics & Technology, 2013, 60(60), 166.
60 宋远佳, 张炜, 杨正伟.强激光与粒子束, 2015, 27(4), 295.
61 Balageas D, Maldague X, Burleigh D, et al. Journal Nondestructive Eva-luation, 2016, 35(1), 1.
62 Umar M Z, Vavilov V P, Abdullah H, et al. Russian Journal of Nondestructive Testing, 2017, 53(7), 530.
63 Liang T, Ren W W, Tian G Y, et al. Composite Structures, 2016, 143, 352.
64 He Y, Yang R. IEEE Transactions on Industrial Informatics, 2015, 11(6), 1287.
66 Zhang H, Sfarra S, Sarasini F, et al. Applied Sciences, 2018, 8, 1.
67 Melin L G, Schon J, Nyman T. International Journal of Fatigue, 2002, 24, 263.
68 Chen A S, Almond D P, Harris B. International Journal of Fatigue, 2002, 24, 257.
69 Zhang L, Wang R, Liu, W, et al. Journal of Reinforced Plastics and Composites, 2012, 31(4), 259.
70 梁小林, 许希武, 林智育.材料工程, 2016, 44(12), 100.
71 Feng Y, He Y, Tan X, et al. International Journal of Fatigue, 2017, 100, 308.
72 Feng Y, He Y, Zhang H, et al. Composite Structures, 2017, 164, 248.
73 Ravikiran N K, Venkataramanaiah A, Bhat M R, et al.In: National Seminar on Non-destructive Evaluation. Hyderabad, 2006, pp. 88.
74 Toubal L, Karama M, Lorrain B. International Journal of Fatigue, 2006, 28, 1867.
75 李斌, 童小燕, 姚磊江, 等.机械科学与技术, 2011, 30(2), 191.
76 Karama M. Structural Control and Health Monitoring, 2011, 18, 781.
77 Montesano J, Fawaz Z, Bougherara H. Composite Structures, 2013, 97, 76.
78 Peyrac C, Thomas J, Leray N, et al. Procedia Engineering, 2015, 133, 129.
79 Luong M P. Infrared Physics & Technology, 2007, 49(3), 306.
80 Garnier C, Lorrain B. Pastor M L. In: 14th International Conference of Experimental Mechanics. Poitiers, 2010, pp. 42020.
81 Sahin O S, Selek M. CBU Journal of Science, 2015, 12(2), 159.
82 Li Yin, Zhang Wei, Ming Anbo, et al. Composite Structures, 2017,176, 1.
83 Li Yin,Song Yuanjia . IEEE Sensors Journal, 2021, 21(10), 113939.
84 Mian A, Han X, Islam S, et al. Composites Science & Technology, 2004, 64(5), 657.
85 Das S, Reddy N, Raju G.In: 25th National Seminar & International Exhibition on Non-destructive Evaluation. Hyderabad, 2015, pp. 25.
86 Swamy J N, Lahuerta F, Anisimov A G, et al.In: 17th European Conference on Composite materials, Munich, 2016, pp. 1.
[1] 李斌, 周薇. CFRP管约束混凝土柱轴压性能试验及有限元分析研究[J]. 材料导报, 2022, 36(Z1): 22040146-6.
[2] 杨荣周, 陈佩圆, 葛进进, 徐颖, 王佳, 刘家兴, 谢昊天. 增幅循环荷载下CFRP约束型橡胶砂浆的疲劳特征[J]. 材料导报, 2022, 36(9): 21040223-10.
[3] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[4] 丁鑫, 肖晓春, 吴迪, 吕祥锋, 潘一山, 白润欣. 考虑初始孔隙性的含瓦斯煤岩力学本构关系与损伤演化研究[J]. 材料导报, 2021, 35(18): 18096-18103.
[5] 高婧, 罗城. 基于SWT模型和威布尔分布的CFRP环带微动疲劳寿命预测[J]. 材料导报, 2021, 35(16): 16015-16020.
[6] 李范, 张杨, 朱利民. 复合材料钻孔缺陷超声检测技术研究进展[J]. 材料导报, 2020, 34(Z2): 528-533.
[7] 魏凤春, 李明哲, 张晓, 关春龙. 碳纤维增强砂轮基体的有限元模态分析研究[J]. 材料导报, 2020, 34(Z2): 590-593.
[8] 谢桂华, 孙悦, 严鹏, 刘炀, 翁煜. 湿/热条件下的CFRP筋粘结型锚具性能研究[J]. 材料导报, 2020, 34(22): 22178-22184.
[9] 韩艳, 王龙龙, 刘志浩. CFRP板加固含I型裂纹混凝土的断裂扩展规律[J]. 材料导报, 2019, 33(Z2): 304-308.
[10] 王家滨, 牛荻涛. 盐湖卤水侵蚀喷射混凝土衬砌损伤演化[J]. 材料导报, 2019, 33(20): 3426-3435.
[11] 肖敏, 罗迎社, 司家勇, 刘秀波. 金属非对称循环下的匀变速加载问题[J]. 《材料导报》期刊社, 2018, 32(4): 676-680.
[12] 朱晔, 魏世丞, 梁义, 王玉江, 郭蕾, 刘文超. 可视化无损检测技术研究进展*[J]. 《材料导报》期刊社, 2017, 31(3): 63-69.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed