Please wait a minute...
材料导报  2021, Vol. 35 Issue (18): 18096-18103    https://doi.org/10.11896/cldb.20080083
  无机非金属及其复合材料 |
考虑初始孔隙性的含瓦斯煤岩力学本构关系与损伤演化研究
丁鑫1, 肖晓春1, 吴迪1, 吕祥锋2, 潘一山1,3, 白润欣4
1 辽宁工程技术大学力学与工程学院,阜新 123000
2 北京科技大学土木与资源工程学院,北京 100083
3 辽宁大学环境学院, 沈阳 110136
4 大连民族大学理学院,预科教育学院,大连 116600
Study on Mechanical Constitutive Relationship and Damage Evolution of Gas-bearing Coal Based on Initial Pore-cracks
DING Xin1, XIAO Xiaochun1, WU Di1, Lyu Xiangfeng2, PAN Yishan1,3, BAI Runxin4
1 School of Mechanics and Engineering, Liaoning Technical University, Fuxin 123000, China
2 School of Civil and Resource Engineering, University of Science & Technology Beijing, Beijing 100083, China
3 School of Environment, Liaoning University, Shenyang 110136, China
4 School of Science & School of Pre-university, Dalian Minzu University, Dalian 116600, China
下载:  全 文 ( PDF ) ( 11225KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 冲击地压及瓦斯次生灾害更易在深部复杂的地质构造区域发生,其实质是煤岩介质在变化多样的地应力、采动应力与瓦斯共同作用下的力学平衡系统失稳过程,准确描述含瓦斯煤岩受载过程的力学关系是明确煤岩动力灾害孕育与发生机制的根本。考虑原生裂隙对煤岩力学性质的劣化特性,将其定义为初始损伤,理论推导了以孔隙率表征的初始损伤公式,综合考虑初始孔隙率、吸附瓦斯煤岩基质膨胀、瓦斯运移的软化特性及真三向应力状态,构建了基于非均匀性统计理论的含瓦斯煤岩损伤演化方程及力学本构模型,并定性分析了各参量对煤岩力学性质的影响规律。结果表明:当煤岩初始孔隙率越高时,任意截面的裂纹长度、宽度和条数均增加,有效面积减小,局部更易产生应力集中,损伤曲线在峰值损伤量更高及峰后段增长率略降低,反之,当均质度越高时,其峰值点处的损伤值越低,损伤演化越滞后并集中于峰后阶段发展,相应的损伤演化曲线斜率越大;随瓦斯压力升高,煤岩吸附产生的膨胀应力明显增加,吸附参量a、b值同样对膨胀应力具有促进作用;弹性模量和均质度对煤岩强度及峰后应力降模量均呈现为正相关影响,使煤岩冲击危险性增强;初始损伤和较高的瓦斯压力均促进了煤岩中裂隙的发育,降低了煤岩性质的均一性,使强度和峰后应力降模量减小而塑性特征越发显著并促进煤岩软化,这也是高瓦斯煤层冲击地压低于常规指标发生的原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁鑫
肖晓春
吴迪
吕祥锋
潘一山
白润欣
关键词:  冲击地压  初始损伤  含瓦斯煤岩  力学本构关系  损伤演化    
Abstract: Rockbursts and secondary gas disasters are more likely to occur in complex geological structures, under the combined action of varied in-situ stress, mining stress and gas, which is the instability process of the mechanical balance system of coal media. Thus, it is the foundation of coal dynamic disaster incubation and occurrence mechanism, that describing the mechanical relationship of gas-bearing coal loading process accurately. In this paper, the primary crack is considered, defined as the initial damage and its theoretical derivation formula characterized by porosity is obtained, for the deterioration on the mechanical properties of coal. The damage evolution equation and mechanical constitutive model of gas-bearing coal based on non-uniform statistical theory is constructed, which the parameter of initial porosity, expansion of coal matrix gas adsorbed, softening characteristics of gas seepage and true triaxial stress state is considered, and the influence on mechanical properties is analyzed qualitatively. The result show that, the higher initial porosity of coal, the grater of length, width and number of cracks in any section, it's easier to form stress concentration with the effective area reduced, thus, the damage curve had a higher value at peak and a slight decrease in the growth rate of the post peak. Otherwise, the higher the degree of homogeneity, the lower the damage value at the peak, the more lagging the damage evolution is, and the greater the slope of the damage evolution curve. The expansion stress generated by coal adsorption improved signifi-cantly, with the increase of gas pressure, and the adsorption parameters a, b also promote it. The elastic modulus and homogeneity have a positive correlation on the strength of coal, and the modulus of stress reduction at post-peak, which increases the risk of coal burst liability. Both initial damage and gas promote the development of cracks in coal and reduced the uniformity of its properties, and then, the strength and stress drop modulus at post-peak decrease, while the plastic characteristics become more prominent and promote softening, it's also the reason why the rockburst happened in high gas coal seam with the risk indicators lower than conventionality.
Key words:  rockburst    initial damage    gas-bearing coal    mechanical constitutive relationship    damage evolution
               出版日期:  2021-09-25      发布日期:  2021-09-30
ZTFLH:  TD315  
基金资助: 国家自然科学基金项目(51774164;51974186;51974147);辽宁省教育厅青年育苗项目(LJ2020QNL001);辽宁工程技术大学创新团队项目(LNTU20TD-17)
作者简介:  丁鑫,辽宁工程技术大学讲师。2019年12月毕业于辽宁工程技术大学工程力学专业,获博士学位,主要从事深部岩体力学性质和煤矿动力灾害机理及预警、预测方法研究工作。主持辽宁省教育厅青年育苗项目、科技厅博士启动项目各1项,在国内外重要学术期刊发表论文近20篇,申报或获批发明专利10余项。
肖晓春,辽宁工程技术大学教授、博士研究生导师。在矿业工程领域从事冲击地压、瓦斯突出等矿井动力灾害发生机理、预测防治和煤层气运移规律及相关增采机理的研究工作。主持国家重点研发计划项目、国家自然科学基金、省部级研究项目近10项。在国内外较高水平学术期刊上发表论文50余篇,获批发明、实用新型专利10余项。
引用本文:    
丁鑫, 肖晓春, 吴迪, 吕祥锋, 潘一山, 白润欣. 考虑初始孔隙性的含瓦斯煤岩力学本构关系与损伤演化研究[J]. 材料导报, 2021, 35(18): 18096-18103.
DING Xin, XIAO Xiaochun, WU Di, Lyu Xiangfeng, PAN Yishan, BAI Runxin. Study on Mechanical Constitutive Relationship and Damage Evolution of Gas-bearing Coal Based on Initial Pore-cracks. Materials Reports, 2021, 35(18): 18096-18103.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080083  或          http://www.mater-rep.com/CN/Y2021/V35/I18/18096
1 Pan Y S. Rockbust in coal mine, Science Press, China,2018(in Chinese).
潘一山. 煤矿冲击地压, 科学出版社, 2018.
2 Qi Q X, Li Y Z, Zhao S K, et al. Coal Science and Technology, 2019, 47(9), 1(in Chinese).
齐庆新, 李一哲, 赵善坤, 等. 煤炭科学技术, 2019, 47(9), 1.
3 Jiang Y D, Zhao Y X. Chinese Journal of Rock Mechanics and Enginee-ring, 2015, 34(11), 2188(in Chinese).
姜耀东,赵毅鑫. 岩石力学与工程学报, 2015, 34(11), 2188.
4 Wang S B, Zhang X. Journal of China Coal Society, 2008, 33(7), 738(in Chinese).
王胜本,张晓. 煤炭学报, 2008, 33(7), 738.
5 Liu X R, Xian X F. Coal Science and Technology, 2004, 32(8), 69(in Chinese).
刘新荣, 鲜学福.煤炭科学技术, 2004, 32(8), 69.
6 Pan Y S. Journal of China Coal Society, 2016, 41(1), 105(in Chinese).
潘一山.煤炭学报, 2016, 41(1), 105.
7 Wang Z, Yin G Z, Hu Q T, et al. Journal of Mining & Safety Enginee-ring, 2010, 27(4), 272(in Chinese).
王振, 尹光志, 胡千庭, 等.采矿与安全工程学报, 2010, 27(4), 272.
8 Zhang M T, Xu Z H, Pan Y S, et al. Journal of China Coal Society, 1991, 16(4), 48(in Chinese).
章梦涛, 徐曾和, 潘一山, 等. 煤炭学报, 1991, 16(4), 48.
9 Liang B, Zhang M T, Wang Y J. Roil and Soil Mechanics, 1995, 16(3), 22(in Chinese).
梁冰, 章梦涛, 王泳嘉.岩土力学, 1995, 16(3), 22.
10 Yun S, Palazotto A.Engineering Fracture Mechanics, 2007, 74, 2844.
11 Shao J F, Jia Y, Kondo D, et al. Mechanics of Materials, 2006, 38, 218.
12 Rashid K A A, Sun-Myung K. Engineering Fracture Mechanics, 2010, 77, 1577.
13 Zhu J, Jiang Y D, Zhao Y X. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2), 3296(in Chinese).
祝捷, 姜耀东, 赵毅鑫.岩石力学与工程学报, 2009, 28(S2), 3296.
14 Liu H Y, Cheng Y P, Zhao C C, et al. Chinese Journal of Rock Mecha-nics and Engineering, 2010, 29(2), 358(in Chinese).
刘洪永, 程远平, 赵长春, 等.岩石力学与工程学报, 2010, 29(2), 358.
15 Wang D K, Yin G Z, Liu J, et al. Chinese Journal of Geotechnical Engineering, 2010, 32(1), 55(in Chinese).
王登科, 尹光志, 刘健, 等.岩土工程学报, 2010, 32(1), 55.
16 Brannon R M, Leelavanichkul S. International Journal of Fracture, 2010,163, 133.
17 Yu Y J, Wang D G, Li Q, et al. Journal of China Coal Society, 2012, 37(4), 585(in Chinese).
于永江, 王大国, 李强, 等.煤炭学报, 2012, 37(4), 585.
18 Hao X J, Yuan L, Lu Z G, et al. Journal of China Coal Society, 2017,42(4), 896(in Chinese).
郝宪杰, 袁亮, 卢志国, 等.煤炭学报, 2017,42(4), 896.
19 Zhao Y, Liu H. Rock Mechanics and Rock Engineering, 2012, 45, 389.
20 Sun C M, Cao S G, Li Y, et al. Journal of China University of Mining & Technology, 2016, 45(2), 244(in Chinese).
孙传猛, 曹树刚, 李勇, 等. 中国矿业大学学报, 2016, 45(2), 244.
21 Cai T T, Feng Z C, Zhao D, et al. Roil and Soil Mechanics, 2018, 39(S1), 61(in Chinese).
蔡婷婷, 冯增朝, 赵东, 等.岩土力学, 2018, 39(S1), 61.
22 Xu P, Yang S Q. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3), 537(in Chinese).
徐鹏, 杨圣奇. 岩石力学与工程学报, 2015, 34(3), 537.
23 Zhou C B, Wan Z J, Zhang Y, et al. Journal of China Coal Society, 2012, 37(12), 2020(in Chinese).
周长冰, 万志军, 张源, 等.煤炭学报, 2012, 37(12), 2020.
24 Li Z X. Damage mechanics and its application, Science Press, China, 2002(in Chinese).
李兆霞. 损伤力学及其应用, 科学出版社, 2002.
25 Lemaitre J, Chaboche J L. Mechanics of solid materials, Cambridge University Press, Cambridge, UK, 1990.
26 Huang Z P. Fundamental of continuum mechanics(2nd press), Higher Education Press, China, 2012(in Chinese).
黄筑平. 连续介质力学基础(第二版), 高等教育出版社, 2012.
27 Wu J L. Elasticity(2nd press), Higher Education Press, China, 2011(in Chinese).
吴家龙. 弹性力学(第二版), 高等教育出版社, 2011.
28 Cao W G, Zhao M H, Liu C X. Chinese Journal of Rock Mechanics and Engineering, 2005, 14(14), 2403(in Chinese).
曹文贵, 赵明华, 刘成学. 岩石力学与工程学报, 2005, 14(14), 2403.
29 Liu C X, Yang L D, Cao W G. Chinese Journal of Underground Space and Engineering, 2007, 3(3), 453 (in Chinese).
刘成学, 杨林德, 曹文贵.地下空间与工程学报, 2007, 3(3), 453.
30 Qin Q C, Li K G, Yang B W, et al. Roil and Soil Mechanics, 2018, 39(S2),14(in Chinese).
秦庆词, 李克钢, 杨宝威, 等. 岩土力学, 2018, 39(S2),14.
31 Wu Z, Zhang C J. Chinese Journal of Rock Mechanics and Engineering, 1996,15(1), 55.
吴政, 张承娟. 岩石力学与工程学报, 1996,15(1), 55.
32 Ding X, Xiao X C, Lv X F, et al. Journal of China Coal Society, 2018, 43(11), 3080(in Chinese).
丁鑫, 肖晓春, 吕祥锋, 等. 煤炭学报, 2018, 43(11), 3080.
33 Lu P, Sheng Z W, Zhu G W, et al. Journal of China University of Science and Technology, 2011, 31(6), 686(in Chinese).
卢平, 沈兆武, 朱贵旺, 等.中国科学技术大学学报, 2011, 31(6), 686.
34 Zhu J, Wang X, Yu P C, et al. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(9), 2213(in Chinese).
祝捷, 王学, 于鹏程, 等.岩石力学与工程学报, 2017, 36(9), 2213.
35 Zhao Y X, Jiang Y D. International Journal of Coal Geology, 2010, 83, 11.
36 Guo L W, Yu Q X, Jiang C L, et al. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(3), 366(in Chinese).
郭立稳, 俞启香, 蒋承林, 等.岩石力学与工程学报, 2000, 19(3), 366.
37 Liu M J, Yan A H, Ding W, et al. Journal of China Coal Society, 2003, 28(1), 50(in Chinese)
刘明举, 颜爱华, 丁伟, 等. 煤炭学报, 2003, 28(1), 50.
38 Xu J, Zhou W J, Liu D, et al. Journal of China Coal Society, 2013, 38(2), 239(in Chinese).
许江, 周文杰, 刘东, 等. 煤炭学报, 2013, 38(2), 239.
39 Zhang C,Liu X F,Wang X R, et al. Journal of China Coal Society, 2018, 43(3), 743(in Chinese).
张冲, 刘晓斐, 王笑然, 等. 煤炭学报, 2018, 43(3), 743.
40 Xiao X C, Ding X, Pan Y S, et al. Roil and Soil Mechanics, 2018, 39(S2), 451(in Chinese).
肖晓春, 丁鑫, 潘一山, 等.岩土力学, 2018, 39(S2), 451.
41 冯增朝. 低渗透煤层瓦斯强化抽采理论及应用, 科学出版社, 2008.
[1] 刘鑫, 倪铖伟, 孙东宁, 邵志伟, 史云强. 干湿循环下含初始损伤泡沫混凝土劣化机理研究[J]. 材料导报, 2021, 35(14): 14065-14071.
[2] 王家滨, 牛荻涛. 盐湖卤水侵蚀喷射混凝土衬砌损伤演化[J]. 材料导报, 2019, 33(20): 3426-3435.
[3] 肖敏, 罗迎社, 司家勇, 刘秀波. 金属非对称循环下的匀变速加载问题[J]. 《材料导报》期刊社, 2018, 32(4): 676-680.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed