Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21100025-5    
  无机非金属及其复合材料 |
碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究
张雷1,2, 李姗姗1,2, 庄毅3, 唐毓婧4, 罗欣1,2
1 中国纺织科学研究院有限公司,北京 100025
2 生物源纤维制造技术国家重点实验室,北京 100025
3 中国石油化工集团有限公司科技部,北京 100728
4 中国石油化工股份有限公司北京化工研究院,北京 100013
Comparative Study on Mechanical Properties of Carbon Fiber and Glass-Carbon Fiber Interlaminar Hybrid 2.5D Woven Composites
ZHANG Lei1,2, LI Shanshan1,2, ZHUANG Yi3, TANG Yujing4, LUO Xin1,2
1 China Textile Academy, Beijing 100025, China
2 State Key Laboratory of Biobased Fiber Manufacture Technology, Beijing 100025, China
3 Science & Technology Department,China Petrochemical Corporation,Beijing 100728, China
4 Beijing Research Institute of Chemical Industry, SINOPEC, Beijing 100013, China
下载:  全 文 ( PDF ) ( 6362KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 2.5D机织复合材料由于具有特殊的层间联锁结构和相对成熟的织造、制备技术,在很多领域得到了广泛关注和应用。本工作制备了一种碳纤维2.5D机织复合材料和一种碳纤维-玻璃纤维混杂的2.5D机织复合材料。对两种复合材料经向和纬向的压缩、弯曲及剪切性能进行研究,并分析结构与性能间的关系。结果显示:2.5D织物经向压缩强度高于纬向,也优于2.5D混杂织物复合材料,而2.5D织物与2.5D混杂织物复合材料纬向压缩强度十分接近;2.5D织物与2.5D混杂织物复合材料经向弯曲强度差别不大,2.5D织物纬向弯曲强度则明显高于2.5D混杂织物复合材料;2.5D织物纬向最大层间剪切强度大于经向层间剪切强度,2.5D织物与2.5D混杂织物复合材料经向剪切强度差别不大,而2.5D混杂织物复合材料纬向剪切强度远低于2.5D织物复合材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张雷
李姗姗
庄毅
唐毓婧
罗欣
关键词:  碳纤维  玻-碳混杂  2.5维机织  复合材料  力学性能    
Abstract: Due to the special interlayer interlocking structure and relatively mature weaving and preparation technology, 2.5D woven composites have been widely concerned and applied in many fields. In this work, a carbon fiber 2.5D woven composite and a hybrid 2.5D woven composite of carbon fiber and glass fiber were prepared. The compression, bending and shear properties of two composites in warp and weft directions were studied, and the relationship between structure and properties was analyzed. The results show that the warp compressive strength of 2.5D fabric is higher than that of weft, and it is also better than that of 2.5D hybrid fabric composites; the weft compressive strength of 2.5D fabric and 2.5D hybrid fabric composites is very close; the warp bending strength of 2.5D fabric and 2.5D hybrid fabric composites is similar, and the weft bending strength of 2.5D fabric is significantly higher than that of 2.5D hybrid fabric composites; 2.5D fabric weft maximum interlaminar shear strength is greater than the warp interlaminar shear strength; there is little difference between 2.5D fabric and 2.5D hybrid fabric composites in the warp shear strength, while the weft shear strength of 2.5D hybrid fabric composites is much lower than that of 2.5D fabric composites.
Key words:  carbon fiber    glass fiber-carbon fiber hybrid    2.5D woven    composite    mechanical properties
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TB332  
基金资助: 中国石油化工股份有限公司科技部项目(219036)
通讯作者:  zhanglei48@cta.gt.cn   
作者简介:  张雷,中国纺织科学研究院有限公司高级工程师。2009年9月至2012年6月,在浙江师范大学获得物理化学专业硕士学位,毕业后至今一直在中国纺织科学研究院有限公司从事科研开发工作。申请国家发明专利15项,其中授权6项。主要围绕功能性纤维、薄膜材料及纤维增强复合材料方面开展相关基础理论和应用研究。
引用本文:    
张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
ZHANG Lei, LI Shanshan, ZHUANG Yi, TANG Yujing, LUO Xin. Comparative Study on Mechanical Properties of Carbon Fiber and Glass-Carbon Fiber Interlaminar Hybrid 2.5D Woven Composites. Materials Reports, 2022, 36(Z1): 21100025-5.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21100025
1 Whitney T J,Chou T W. Journal of Composite Materials, 1989, 123(3), 809.
2 Byun J H, Chou T W. The Journal of the Textile Institute, 1990, 81(4), 538.
3 Mouritz A P, Bannister M K, Falzon P J. Composites Part A: Applied Science and Manufacturing, 1999,30(11), 1445.
4 杨彩云, 李嘉禄. 东华大学学报(自然科学版), 2005, 31(5), 53.
5 李姗姗, 张雷, 王京红, 等. 材料导报, 2020, 34(S2), 603.
6 陈利.航空制造技术,2008(4), 45.
7 荆云娟, 韦鑫, 张元, 等. 棉纺织技术, 2019,47(11), 79.
8 Chen X, Lo W Y, Tayyar A E. Textile Research Journal, 2002, 73(3), 195.
9 魏俊伟, 陶红波, 郭万涛. 材料开发与应用, 2018, 33(6), 81.
10 陈秋宇, 赫玉欣, 张丽, 等. 化工新型材料, 2020, 48(7), 10.
11 Bhagwat P M, Ramachandran M, Raichurkar P. Materials Today: Proceedings, 2017, 4(8), 7375.
12 Czigány T. Composites Science and Technology, 2006, 66(16), 3210.
13 卢子兴,周原,冯志海,等. 复合材料学报,2015,32(1), 150.
14 曹海建,钱坤,盛东晓. 玻璃钢/复合材料,2009(3), 15.
[1] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[2] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[3] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[4] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[5] 吴青山, 赵鹏程, 刘志启, 周自圆, 李娜, 莫云泽. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(Z1): 22030128-8.
[6] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[7] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[8] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[9] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[10] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[11] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[12] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[13] 殷卫峰, 曾耀德, 杨中强, 张记明, 刘锐, 霍翠, 颜善银. 液晶高分子聚合物的类型、加工、应用综述[J]. 材料导报, 2022, 36(Z1): 21100214-5.
[14] 李辉, 朱刚, 张建卫, 康昆勇, 杜官本, 李园园, 孙呵. 二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展[J]. 材料导报, 2022, 36(9): 20090029-9.
[15] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed