Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20090329-6    https://doi.org/10.11896/cldb.20090329
  无机非金属及其复合材料 |
缺陷偶极子调控铅基钙钛矿压电陶瓷性能的研究进展
唐明响, 陈良, 祁核, 孙胜东, 刘辉, 陈骏
北京科技大学理化系,北京 100083
Research Progress of Defect Dipoles Regulating Properties of Lead-based Perovskite Piezoelectric Ceramics
TANG Mingxiang, CHEN Liang, QI He, SUN Shengdong, LIU Hui, CHEN Jun
Department of Physical and Chemistry, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 4364KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 压电陶瓷作为一种可以实现机械能和电能之间相互转换的功能陶瓷材料,广泛应用于传感器、制动器、超声换能器、医学超声成像及发动机燃油喷射系统等领域。在压电陶瓷中,元素掺杂可以有效调控陶瓷的电学性能,伴随掺杂而产生的缺陷偶极子对压电陶瓷性能有着显著而独特的影响。因此研究缺陷偶极子对压电陶瓷性能的调控机理,有助于理解压电陶瓷诸多物理现象的内在成因,譬如老化、疲劳等。
通过元素掺杂引入的氧空位会导致钙钛矿结构的压电陶瓷产生缺陷偶极子,而缺陷偶极子与自发极化之间的耦合效应会影响陶瓷的铁电响应行为,从而使得压电陶瓷出现束腰电滞回线和偏移电滞回线等特征。另外由于陶瓷中氧空位的扩散速率很低,使得缺陷偶极子极化方向趋于稳定,进而抑制极化旋转和限制畴壁运动,有助于提高压电陶瓷的机械品质因数。
尽管有大量研究通过缺陷偶极子调控压电陶瓷的宏观性能使其能够满足不同的应用需求,然而由于压电陶瓷为多晶材料,其内部晶粒取向各异且存在复杂的铁电畴结构,压电陶瓷中缺陷偶极子在形成过程中的微观机理与其具体形态以及缺陷偶极子对压电陶瓷性能的具体作用机理仍有待深入研究。此外,压电陶瓷在高驱动场下的高功率特性对机电设备的实际设计具有重要意义,因此缺陷偶极子对压电陶瓷高功率特性的影响也值得关注。
本文从氧空位诱导缺陷偶极子的形成及其表征手段、缺陷偶极子对铅基压电陶瓷电滞回线的影响和不同受主掺杂对铅基压电陶瓷机械品质因数的影响出发,论述了缺陷偶极子与压电陶瓷自发极化耦合效应引发的偏移和束腰奇异电滞回线特征,揭示了缺陷偶极子主要通过抑制极化旋转和限制畴壁运动提高机械品质因数的机理。然而关于缺陷偶极子的形态、与非四方相间的耦合关系以及缺陷偶极子对压电陶瓷高功率特性的影响等问题仍需进一步的研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐明响
陈良
祁核
孙胜东
刘辉
陈骏
关键词:  铅基压电陶瓷  氧空位  缺陷偶极子  电滞回线  机械品质因数    
Abstract: Piezoelectric ceramics, which can realize the conversion between mechanical energy and electrical energy, are widely used in sensors, brakes, ultrasonic transducers, medical ultrasonic imaging and engine fuel injection systems. For piezoelectric ceramics, element doping can effectively control the electrical properties of ceramics. Defect dipoles which are caused by doping have significant and unique influence on the performance of piezoelectric ceramics. Therefore, studying the regulation mechanism of defect dipoles on the properties of piezoelectric ceramics is helpful to understand the origin of many physical phenomena, such as aging and fatigue.
The oxygen vacancy introduced by element doping can lead to the formation of defect dipoles in perovskite piezoelectric ceramics, and the coupling effect between the defect dipoles and spontaneous polarization can affect the ferroelectric response behavior of the ceramics, resulting in the pinched polarization hysteresis loop and asymmetric polarization hysteresis loop. In addition, the low diffusion rate of oxygen vacancies in ceramics stabilizes the polarization direction of defect dipoles, which restrains the polarization rotation and restricts the motion of domain walls, thus improving the mechanical quality factor.
Numerous studies have adjusted the macroscopic properties of piezoelectric ceramics through defect dipoles to make it meet different application requirements. However, due to piezoelectric ceramics are polycrystalline materials with different grain orientations and complex ferroelectric domain structures. Therefore, the microscopic mechanism during the formation process of the defect dipoles and its specific shape in the piezoelectric ceramics and the specific mechanism of the effect of the defect dipoles on the properties of piezoelectric ceramics need to be further studied. In addition, the high-power characteristics of piezoelectric ceramics under high driving fields are of great help to the actual design of electromechanical devices. Therefore, the impact of defect dipoles on the high-power characteristics of piezoelectric ceramics should also be paid attention to.
The research progress in the field of the mechanism of defect dipoles regulating the properties of lead-based piezoelectric ceramics is summarized in this paper. The formation and characterization of defect dipoles caused by oxygen vacancies, the influence of defect dipoles on the hysteresis loops of piezoelectric ceramics, and the influence of doping of different low valence elements on the mechanical quality factor (Qm) of lead-based piezoelectric ceramics are discussed. It can be summarized that the coupling between the defect dipoles and the spontaneous polarization of piezoelectric ceramics leads to pinched polarization hysteresis loops and asymmetric polarization hysteresis loops. In addition, the defect dipoles can improve the mechanical quality factor of materials by suppressing polarization rotation and limiting domain wall motion. However, further research is needed to study the shape and distribution of the defect dipoles, the coupling between the defect dipoles and the non-tetragonal phase, and its effect on the high power characteristics of the piezoelectric ceramics.
Key words:  lead-based piezoelectric ceramics    oxygen vacancies    defect dipoles    hysteresis loop    mechanical quality factor
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  TM282  
基金资助: 中央高校基本科研业务费(06500162)
通讯作者:  huiliu@ustb.edu.cn20090329-1   
作者简介:  唐明响,2018年6月毕业于北京科技大学,获得冶金工程专业工学学士学位。现为北京科技大学冶金与生态工程专业硕士研究生。目前研究领域为铅基压电陶瓷的性能与机理研究。刘辉,北京科技大学数理学院副教授。2014年6月本科毕业于北京科技大学冶金与生态工程学院冶金工程专业,2020年1月在北京科技大学取得物理化学专业博士学位。2018年10月至2019年10月在美国中密歇根大学和美国阿贡国家实验室做访问学者。目前主要从事铁电压电氧化物性能及机理的研究工作。已发表论文30余篇,包括Physical Review Letters,Acta Materialia等。
引用本文:    
唐明响, 陈良, 祁核, 孙胜东, 刘辉, 陈骏. 缺陷偶极子调控铅基钙钛矿压电陶瓷性能的研究进展[J]. 材料导报, 2022, 36(2): 20090329-6.
TANG Mingxiang, CHEN Liang, QI He, SUN Shengdong, LIU Hui, CHEN Jun. Research Progress of Defect Dipoles Regulating Properties of Lead-based Perovskite Piezoelectric Ceramics. Materials Reports, 2022, 36(2): 20090329-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090329  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20090329
1 Haertling G H. Ceramic Society, 2010, 82(4), 797.
2 Kenji U. Advanced piezoelectric materials (second edition), Woodhead Publishing, The United Kingdom, 2017, pp. 95.
3 Zhang S, Xia R, Lebrun L. Materials Letters, 2005, 59(27), 3471.
4 Kenji U. Advanced piezoelectric materials (second edition), Woodhead Publishing, The United Kingdom, 2017, pp. 1.
5 Kenji U. Advanced piezoelectric materials (second edition), Woodhead Publishing, The United Kingdom, 2017, pp. 647.
6 Yu Y, Yang J, Wu J, et al. Ceramics International, 2020, 46(11), 19103.
7 Luo N, Zhang S, Li Q, et al. Journal of Materials Chemistry C, 2016, 4(20), 4568.
8 Zhao Z, Dai Y, Li X, et al. Applied Physics Letters, 2016, 108(17), 172906.
9 Zhao Z H, Dai Y, Huang F. Sustainable Materials and Technologies, 2019, 20, e00092.
10 Cheng M C, Fang Z, Li F, et al. Ceramics International, 2020, 46(9), 13324.
11 Zheng L M, Yang L Y, Li Y R, et al. Physical Review Applied, 2018, 9(6), 064028.
12 Tan Q, Li J X, Viehland D. Applied Physics Letters, 1999, 75(3), 418.
13 Luo X, Zeng J, Shi X, et al. Ceramics International, 2018, 44(7), 8456.
14 Ren X B. Nature Materials, 2004, 3(2), 91.
15 Ren X B, Otsuka K. Physical Review Letters, 2000, 85(5), 1016.
16 Dai Y J, Zhao Y J, Zhao Z, et al. Journal of Physics D Applied Physics, 2016, 49(27), 275303.
17 Lamoreaux R H, Hildenbran D L. Journal of Physical and Chemical Reference Data, 1984, 13(1), 151.
18 Eichel R A. Journal of the American Ceramic Society, 2010, 91(3), 691.
19 Qiao H, He C, Wang Z, et al. Materials and Design, 2017, 117, 232.
20 Tian S, Cao L, Zhang Y, et al. Ceramics International, 2020, 46(8), 10040.
21 Fu J, Zuo R, Qi H, et al. Applied Physics Letters, 2019, 114(9), 092904.
22 Du H, Shi X, Cui Y. Solid State Communications, 2010, 150(27), 1213.
23 Eichel R A, Dinse K P, Kungl H, et al. Applied Physics A, 2005, 80(1), 51.
24 Mestric H, Eichel R, Dinse K, et al. Journal of Applied Physics, 2004, 96(12), 7440.
25 Wu Q, Hao M, Zeng Z, et al. Ceramics International, 2017, 43(14), 10866.
26 Jin L, Li F, Zhang S. Journal of the American Ceramic Society, 2014, 97(1), 1.
27 Tan X, Ma C, Frederick J, et al. Journal of the American Ceramic Society, 2011, 94(12), 4091.
28 Huband S, Thomas P A. Journal of Applied Physics, 2017, 121(18), 184105.
29 Gao Y, Uchino K, Viehland D. Journal of Applied Physics, 2007, 101(5), 054109.
30 Liu W, Zhang L, Chen W, et al. Applied Physics Letters, 2011, 99(9), 092907.
31 Zhang B, Qi H, Zuo R. Ceramics International, 2017, 44(5), 5453.
32 Rojac T, Drnovsek S, Bencan A, et al. Physical Review B, 2016, 93(1), 014102.
33 Garcia J E, Perez R, Ochoa D A, et al. Journal of Applied Physics, 2008, 103(5), 054108.
34 Morozov M I, Damjanovic D. Journal of Applied Physics, 2010, 107(3), 361.
35 Zheng T, Wu J, Xiao D, et al. Progress in Materials Science, 2018, 98, 552.
36 Liu G, Zhang S, Jiang W, et al. Materials Science and Engineering: R: Reports, 2015, 89, 1.
37 Uchino K, Zheng J H, Chen Y H, et al. Journal of Materials Science, 2006, 41(1), 217.
38 Zeng J, Zhao K, Shi X, et al. Scripta Materialia, 2018, 142, 20.
39 Sun Q C, Liu T. Journal of Wuhan University of Technology Materials Science Edition, 2005, 20, 1.
40 He L X, Li C E. Journal of Materials Science, 2000, 35, 2477.
41 Chen Y H, Uchino K, Shen M, et al. Journal of Applied Physics, 2001, 90(3), 14.
42 Qi X, Sun E, Wang J, et al. Ceramics International, 2016, 42(14), 15332.
43 Jakes P, Erdem E, Eichel R A, et al. Applied Physics Letters, 2011, 98(7), 451.
44 Chandrasekaran A, Damjanovic D, Setter N, et al. Physical Review B, 2013, 88(21), 214116.
45 Kim S J, Ha J Y, Choi J W, et al. Japanese Journal of Applied Physics, 2007, 46(2), 691.
46 Lee S, Lee S, Yoon C, et al. Journal of Electroceramics, 2007, 18(3), 311.
47 Yoo J, Lee S. Journal of Electroceramics, 2008, 23(2), 432.
48 Zhang Y, Chen H, Mao D. Ceramics International, 2013, 39, S159.
49 Wang D, Cao M, Zhang S. Physica Status Solidi (RRL)-Rapid Research Letters, 2012, 6(3), 135.
50 Yan Y, Xu Y, Feng Y. Ceramics International, 2014, 40(4), 5897.
51 Huang T, Fu J, Zuo R. Journal of Materials Science: Materials in Electronics, 2019, 30, 9540.
52 Ahn C W, Song H C, Nahm S, et al. Journal of the American Ceramic Society, 2006, 89(3), 921.
53 Chao X, Ma D, Gu R, et al. Journal of Alloys and Compounds, 2010, 491(1), 698.
54 Yoo J. Ferroelectrics, 2011, 423(1), 135.
55 Zhu K J, Qiu J H, Su L K, et al. Sciencepaper Online, 2010, 5(4), 278 (in Chinese).
朱孔军,裘进浩,苏礼奎, 等.中国科技论文在线, 2010, 5(4), 278.
56 Gao Y, Chen Y H, Ryu J, et al. Japanese Journal of Applied Physics, 2001, 40(2A), 687.
57 Gao Y K, Uchino K, Viehland D. Journal of Applied Physics, 2002, 92(4), 20.
58 Feng Y, Wu J, Chi Q, et al. Chemical Reviews, 2020, 120(3), 1710.
[1] 李龙泰, 张春杰, 罗学彬, 杨彬, 郭利民. 用于CO2催化加氢In2O3基催化剂的研究进展[J]. 材料导报, 2021, 35(21): 21071-21078.
[2] 褚涛, 王五松, 王学杰, 张田才, 杨桂, 翟继卫. 高机械品质因数压电陶瓷材料的研究进展及应用[J]. 材料导报, 2019, 33(z1): 165-170.
[3] 黄俊, 李荣兴, 谢刚, 田林, 杨妮, 俞小花, 李威. 金红石型TiO2(110)表面吸附TiCl4的微观机理[J]. 材料导报, 2018, 32(20): 3524-3530.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed