Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 21030256-5    https://doi.org/10.11896/cldb.21030256
  金属与金属基复合材料 |
晶界特征对AA2099铝锂合金疲劳加载分层断裂影响探究
仇伟夷1,2, 祝祥辉1,3, 黄伟九1,2,3,*, 杨绪盛2, 汪鑫1,2
1 重庆理工大学材料科学与工程学院,重庆 400054
2 重庆文理学院新材料技术研究院,重庆 402160
3 昆明理工大学材料科学与工程学院,昆明 650093
Research on the Effects of Grain Boundary Features on Delaminations of AA2099 Al-Li Alloy Under Fatigue Loading
QIU Weiyi1,2, ZHU Xianghui1,3 , HUANG Weijiu1,2,3,*, YANG Xusheng2 , WANG Xin1,2
1 Faculty of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
2 Institute of New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, China
3 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 9129KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过电子背散射衍射及背散射电子等成像分析手段,从晶体学织构、晶界特征等角度研究了热处理对AA2099铝锂合金疲劳加载时分层断裂的影响机理。研究结果表明:AA2099铝锂合金疲劳加载时分层断裂多发生于平直的高角晶界处,断裂区域晶粒通常为Brass取向,且裂纹扩展方向平行于晶粒的{110}面。分层断裂现象与晶界曲折程度有直接关系,相比于T81试样和T83试样,固溶态(ST)试样晶界更为曲折,相对更难发生分层断裂。预拉伸量的增加使T83试样与T81试样的晶界析出相形貌迥异;循环载荷作用过程中,T83试样粗大颗粒状晶界析出相处的界面脱粘加剧了分层断裂,因此分层断裂严重程度为:T83试样>T81试样>ST试样。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
仇伟夷
祝祥辉
黄伟九
杨绪盛
汪鑫
关键词:  铝锂合金  晶体学织构  晶界特征  分层断裂    
Abstract: The delamination behavior of AA2099 Al-Li alloy under fatigue loading was studied from the perspectives of crystallographic texture and grain boundary features by means of electron backscattered diffraction (EBSD) and back scattered electron (BSE) imaging. The results showed that the delamination of AA2099 Al-Li alloy mostly occured along the high angle grain boundaries. The grains near delamination were mostly in Brass orientation and the delamination fractures were approximately paralleled to the {110} plane of the grains. The tortuosity of grain boundary remarkably affects the delamination behavior. Compared with T81 specimen and T83 specimen, the grain boundaries of solution treatment (ST) specimen were more tortuous. The delamination fractures could hardly be found in ST specimen due to the tortuous grain boundaries. With the increased pre-stretch strain, the morphology of grain boundary precipitates in T83 specimen were quite different from that in T81 specimen. During the cyclic load, the interface decohesion of the coarse grain boundary precipitates in T83 specimen intensified the delamination. Thus, the extents of delamination could be ordered as following: T83 specimen > T81 specimen > ST specimen.
Key words:  Al-Li alloys    crystallographic texture    grain boundary features    delamination
发布日期:  2022-05-24
ZTFLH:  TG146  
基金资助: 国家自然科学基金面上项目(51871038);重庆市技术创新与应用专项重点项目(cstc2019jscx-mbdxX0025)
通讯作者:  huangweijiu@cqut.edu.cn   
作者简介:  仇伟夷,重庆理工大学2018级材料学硕士研究生,于2019年12月至2021年3月在重庆文理学院新材料技术研究中心联合培养学习,主要从事新型铝锂合金失效分析领域研究。
黄伟九,重庆文理学院教授、博士生导师,国家万人计划科技创新领军人才,新世纪百千万人才工程国家级人选。1998年10月毕业于中南大学,获工学博士学位。主要从事材料表面改性及新型铝锂合金组织性能的研究。在Journal of Materials Science and Technology, Materials Science and Engineering: A, Journal of Alloys and Compounds,《中国有色金属学报》《材料导报》等期刊发表论文280余篇(其中SCI收录86篇,EI收录128篇)。
引用本文:    
仇伟夷, 祝祥辉, 黄伟九, 杨绪盛, 汪鑫. 晶界特征对AA2099铝锂合金疲劳加载分层断裂影响探究[J]. 材料导报, 2022, 36(10): 21030256-5.
QIU Weiyi, ZHU Xianghui , HUANG Weijiu, YANG Xusheng , WANG Xin. Research on the Effects of Grain Boundary Features on Delaminations of AA2099 Al-Li Alloy Under Fatigue Loading. Materials Reports, 2022, 36(10): 21030256-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030256  或          http://www.mater-rep.com/CN/Y2022/V36/I10/21030256
1 Wang W, Zhang L. Nonferrous Metals Processing, 2019, 48(2), 4 (in Chinese).
王伟, 张蕾.有色金属加工, 2019, 48(2), 4.
2 Yang F Q, Xiong H, Ren B F, et al. World Nonferrous Metals, 2018, 2(22), 1 (in Chinese).
杨富强, 熊慧, 任柏峰, 等.世界有色金属, 2018, 2(22), 1.
3 Yu D M. Aluminum Fabrication, 2018(6), 5 (in Chinese).
余东梅.铝加工, 2018(6), 5.
4 Xu J J, Kang W, Du C B. Ordnance Material Science and Engineering, 2017, 40(3), 133(in Chinese).
徐进军, 康唯, 都昌兵.兵器材料科学与工程, 2017, 40(3), 133.
5 Li H P, Ye L Y, Deng Y L, et al. Materials China, 2016, 35(11), 859(in Chinese).
李红萍, 叶凌英, 邓运来, 等.中国材料进展, 2016, 35(11), 859.
6 Ruschau J J, Jata K V. Scripta Metallurgica et Materialia, 1990,24(8), 1472.
7 Lynch S P, Wanhill R J H, Byrnes R T, et al. Aluminum-lithium Alloys, Elsevier, Commonwealth of Australia, 2014.
8 Kalyanam S, Beaudoin A J, Dodds R H, et al. Engineering Fracture Mechanics, 2009, 3(76), 2175.
9 Messner M C, Beaudoin A J, Dodds R H. International Journal of Fracture, 2014, 188(1), 232.
10 Shen F H, Yi D Q, Jiang Y, et al. Materials Science & Engineering A, 2016, 16(332), 13.
11 Tayon W, Crooks R, Domack M, et al. Experimental Mechanics, 2010, 50(1), 139.
12 Kumai S, Higo Y. Materials Science and Engineering A, 1996, 1(221), 160.
13 Rao K T V, Yu W K, Ritchie R O. Metallurgical Transactions A, 1989, 20(1), 493.
14 El-Aty A A, Xu Y, Guo X Z, et al. Journal of Advanced Research, 2017, 5(301), 19.
15 Roven H J, Starke E A, SDahl Q, et al. Scripta Metallurgica et Materialia, 1990, 24(2), 421.
16 Jiang B, Cao F H, Wang H S, et al. Materials Science & Engineering A, 2019, 740, 160.
17 Li H Y, Huang G S, Kang W, et al. Journal of Materials Science & Technology, 2016, 32(10), 1050.
18 Du C B, Xiong C, Guan R C, et al. Journal of Aeronautical Materials, 2020, 40(5), 33(in Chinese.
都昌兵, 熊纯, 官瑞春, 等.航空材料学报, 2020, 40 (5), 33.
19 Gao C, Yang L A, C Y J, et al. Transactions of Nonferrous Metals Society of China, 2014, 6(24), 2200.
20 Deschamps A, Decreus B, Geuser F D, et al. Acta Materialia, 2013, 2(61), 4012.
21 Rodgers B I, Prangnell P B. Acta Materialia, 2016, 108(8), 56.
22 Nie J F, Muddle B C. Journal of Phase Equilibria, 1998, 19(6), 550.
23 Zhong J. Rare Metal Materials and Engineering, 2014, 43(8), 1948 (in Chinese).
钟警.稀有金属材料与工程, 2014, 43(8), 1948.
24 Wang X M, Li G A, Jiang J T, et al. Materials Science & Engineering A, 2019, 742, 145.
25 Araullo-Peters V, Gault B, Geuser F D, et al. Acta Materialia, 2014, 66 (3), 204.
26 Lin Y, Lu C, Wei C Y, et al. Materials Characterization, 2018, 141, 167.
27 Wang Y X, Ma X W, Xi H K, et al. Journal of Materials Engineering and Performance, 2020, 29(10), 6965.
28 Tian Y, Jiang B, Yi D Q, et al. Corrosion Science and Protection Techno-logy, 2019, 31(2), 228(in Chinese).
田宇, 姜波, 易丹青, 等.腐蚀科学与防护技术, 2019, 31(2), 228.
29 Ott N, Kairy S K, Yan Y M, et al. Metallurgical and Materials Transactions A, Physical Metallurgy and Materials Science, 2016, 48(1), 53.
30 Decreus B, Deschamps A, Donnadieu P, et al. Materials Science & Engineering A, 2013, 586(2),421.
31 Zhong J, Zhong S, Zheng Z, et al. Transactions of Nonferrous Metals Society of China, 2014, 24, 305.
[1] 李朝阳, 黄光杰, 曹玲飞, 曹宇, 林林. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 21020008-7.
[2] 黄珂, 易幼平, 黄始全, 董非, 王晨光. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 20090263-6.
[3] 郝时嘉, 陆政, 李国爱, 于娟. 高性能铝锂合金关键力学性能各向异性的影响因素及控制措施[J]. 材料导报, 2019, 33(Z2): 389-393.
[4] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[5] 雷蕾, 何晓聪, 高爱凤, 赵得锁. 粘接剂对1420铝锂合金压印接头疲劳性能的影响[J]. 材料导报, 2018, 32(16): 2809-2815.
[6] 程强, 何晓聪, 邢保英, 张越. 铝锂合金T型自冲铆接头疲劳特性及失效机理*[J]. 《材料导报》期刊社, 2017, 31(12): 84-88.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed