Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 367-371    
  金属与金属基复合材料 |
船舶螺旋桨表面防护涂层性能研究
丛巍巍, 桂泰江, 张凯, 王泽昊, 吕钊
海洋涂料国家重点实验室,海洋化工研究院有限公司,青岛 266071
Property Study of Marine Propeller Coating for Ship
CONG Weiwei, GUI Taijiang, ZHANG Kai, WANG Zehao, LYU Zhao
State Key Laboratory of Marine Coatings,Marine Chemical Research Institute Co., Ltd., Qingdao 266071, China
下载:  全 文 ( PDF ) ( 6481KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 空泡腐蚀及海生物污损是制约螺旋桨推进性能发挥的主要障碍。本工作结合实验室性能评价及实船应用研究对设计制备的螺旋桨防护涂层进行了综合性能的考察。在实验室内对螺旋桨防护涂层进行了表面形貌的观察、表面能的计算及表面粗糙度的测量,与传统的自抛光防污涂层相比,螺旋桨防护涂层具有更加平滑的表面。抗空蚀试验表明,经过100 h对冲,螺旋桨防护涂层表面仅有轻微失光,且失重小于5 mg。水动力性能测试结果表明涂覆螺旋桨防护涂层后对水动力性能无影响。16个月的实船应用结果表明,螺旋桨防护涂层整体应用效果良好,仅导边处有小面积区域涂层破损,但无膜下扩散现象,表面附着的污损生物可轻易被高压水冲掉。研究结果表明,螺旋桨防护涂层对保障螺旋桨推进效率,延长其服役寿命具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丛巍巍
桂泰江
张凯
王泽昊
吕钊
关键词:  螺旋桨  抗空蚀  防污    
Abstract: Cavitation and marine organisms are two obstacles when ship propellers keep propulsion efficiency. In this paper, the comprehensive performance of the propeller coating were from laboratory performance evaluation and actual ship application research,. The laboratory has carried out the observation of the surface morphology, the calculation of the surface energy and the measurement of the surface roughness of the propeller coating. Compared with traditional self-polishing antifouling coating, the propeller coating has a smoother surface. The cavitation test showed that after 100 h of hedging, the surface of the propeller coating had only a slight loss of gloss and the weight loss was less than 5 mg. The hydrodynamic performance test results showed that the propeller coating of the has no effect on the hydrodynamic performance. After the use on ship propellers for a period of 16 months, composite coating matched well only with minor damage on the leading edge, but none diffusion under the coating layer. And also marine organisms on blades of propeller could be washed away easily with high pressure water.
Key words:  propeller    anti cavitation    antifouling
                    发布日期:  2021-12-09
ZTFLH:  TQ630.7  
基金资助: 国家自然科学基金(U2006219)
通讯作者:  15153284902@163.com   
作者简介:  丛巍巍,博士,高级工程师。从事海洋防污涂料和防腐涂料研发工作十多年,是涂料领域的技术带头人。近年来,主持和完成了科技部、工信部、军科委、国防科工局、省市科委的科研项目近十项,主持完成的多项防腐防污涂料科研成果实现了产业化,并在国家重大工程型号上、深海工程装备、大型浮式平台及水下武器装备等得到推广应用。形成具有自主知识产权的性能优异的系列化防污涂料产品,有效打破国际跨国涂料公司技术垄断,为国家经济建设和国防建设做出了重大贡献。
引用本文:    
丛巍巍, 桂泰江, 张凯, 王泽昊, 吕钊. 船舶螺旋桨表面防护涂层性能研究[J]. 材料导报, 2021, 35(z2): 367-371.
CONG Weiwei, GUI Taijiang, ZHANG Kai, WANG Zehao, LYU Zhao. Property Study of Marine Propeller Coating for Ship. Materials Reports, 2021, 35(z2): 367-371.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/367
1 Tom Dinham Peren. Maritime Engineering, 2010, 163(4), 182.
2 Lee Jeung Hoon, Park Hyoung Gil, Kim Jin Hak, et al. Ocean Enginee-ring, 2014, 77, 23.
3 计志也, 陆芳. 船舶性能研究, 1996(4),1.
4 吕秀芬, 王海龙, 谢春生, 等.华东船舶工业学院学报,1997(11), 23.
5 David Owen, Yigit Kemal Demirel, Elif Oguz, et al. Ocean Engineering, 2018, 159(1), 505.
6 Schultz M P, Bendick J A, Holm E R, et al. Biofouling, 2011, 27(1), 87.
7 Michael P. Biofouling, 2007, 23(5), 331.
8 史洪微, 刘福春, 韩恩厚, 等. 中国材料进展,2014(2), 95.
9 王波, 张以良, 熊鹰. 武汉理工大学学报,2015, 39(4),773.
10 陈大融.中国基础科学,2010(6), 3.
11 Emin Korkut, Mehmet Atlar. Ocean Engineering, 2012, 41, 1.
[1] 张凯, 桂泰江, 吴连锋, 丛巍巍, 吕钊. 仿生物天然防污策略的研究与发展[J]. 材料导报, 2021, 35(z2): 550-553.
[2] 张凯, 丛巍巍, 桂泰江, 邢涛, 吴连锋. 海洋水产养殖业中的生物污损与控制[J]. 材料导报, 2020, 34(Z1): 78-81.
[3] 张治财, 齐福刚, 赵镍, 欧阳晓平, 马金华. 海洋防污涂料/层技术研究现状及发展趋势[J]. 材料导报, 2019, 33(Z2): 116-120.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed