Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 476-480    
  金属与金属基复合材料 |
超润滑技术的研究现状与发展方向
焦卫卫, 候春莉, 邹敏, 张海鹏
西安长峰机电研究所,西安 710065
Research Status and Development Direction of Superlubricity
JIAO Weiwei, HOU Chunli, ZOU Min, ZHANG Haipeng
Xi'an Changfeng Research Institue of Mechanism and Electricity, Xi'an 710065, China
下载:  全 文 ( PDF ) ( 2919KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 摩擦以及其引起的磨损不仅会造成能源的浪费,还会影响机械装置的精度和寿命。降低摩擦,甚至是实现“零”摩擦在各应用领域都具有迫切的需求。因此,超润滑技术的理论与实验研究都成为近年来研究的热点。本文主要回顾了超润滑概念的提出及研究现状,总结了超润滑现象的独特属性以及产生超润滑所需要具备的条件,筛选了有望产生超润滑的材料并指出了目前研究与应用的困难,最后简要论述了超润滑技术的发展方向及其应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
焦卫卫
候春莉
邹敏
张海鹏
关键词:  超润滑  二维晶体材料  分子模拟  极低摩擦    
Abstract: Friction and wear will not only waste energy, but also affect the accuracy and life of mechanical devices. Reducing friction, even achieving “zero” friction, has an urgent demand in various application fields. Therefore, the theoretical and experimental research of superlubricity technology has become a hotspot in recent years. The concept of superlubricity and its research status are reviewed in this paper. The unique properties of superlubrication phenomenon and the necessary conditions for superlubricity are summarized. The materials that are expected to be suitable for superlubricity are screened, and the difficulties during research and application are pointed out. At last, the development direction and application prospect of superlubricity are briefly discussed.
Key words:  superlubricity    2D-crystal material    molecular simulation    ultralow friction
                    发布日期:  2021-07-16
ZTFLH:  TH117  
通讯作者:  jiao2006weiwei@163.com   
作者简介:  焦卫卫,西安长峰机电研究所高级工程师。2018年毕业于哈尔滨工业大学材料学专业,获工学博士学位。毕业后就职于西安长峰机电研究所,2020年获副高级专业技术职称。以第一作者在国外学术期刊发表SCI论文6篇,申请国家发明专利7项,其中授权5项。研究方向主要围绕先进碳纤维增强树脂基复合材料、二维晶体材料、纳米材料等领域,开展材料的结构设计、成型工艺、性能表征方面的研究。
引用本文:    
焦卫卫, 候春莉, 邹敏, 张海鹏. 超润滑技术的研究现状与发展方向[J]. 材料导报, 2021, 35(Z1): 476-480.
JIAO Weiwei, HOU Chunli, ZOU Min, ZHANG Haipeng. Research Status and Development Direction of Superlubricity. Materials Reports, 2021, 35(Z1): 476-480.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/476
1 Bormuth V, Varga V, Howard J, et al. Science, 2009, 325(5942),870.
2 Urbakh M, Klafter J, Gourdon D, et al.Nature, 2004, 430(6999),525.
3 Scholz C H.Nature, 1998, 391(6662),37.
4 Bowden F P, Tabor D.The friction and lubrication of solids. New York, Oxford University, 1950.
5 Binnig G, et al.Physical Review Letters, 1986, 56(9), 930.
6 Israelachvili J N.Surface Science Reports, 1992, 14(3), 109.
7 Krim J, Widom A.Physical Review B, 1988, 38(17),12184.
8 Krim J.Scientific American, 1996, 275(4), 74.
9 Gudehus G.International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(1), 95.
10 Mate C M. Journal of Physics A: General Physics, 2008, 41(47), 1.
11 Riedo E, Gnecco E, Bennewitz R, et al.Physical Review Letters, 2003, 91(8), 084502.
12 Jansen L, Holscher H, Fuchs H, et al.Physical Review Letters, 2010, 104(25), 256101.
13 Barel I, et al. Physical Review B, 2011, 84(11),115417.
14 Erdemir A, Martin J M.Superlubricity, Elsevier, Netherlands, 2007.
15 Cahangirov S, Ciraci S. Superlubricity in Layered Nanostructures. Gnecco E, Meyer E, Springer International Publishing, Germany, 2015.
16 Szlufarska I, Chandross M, Carpick R W. Journal of Physics D: Applied Physics, 2008, 41(12), 123001.
17 Urbakh M, Meyer E.Nature Materials, 2010, 9(1), 8.
18 Peyrard M, Aubry S.Journal of Physics C: Solid State Physics, 1983, 16(9),1593.
19 Hirano M, Shinjo K.Physical Review B, 1990, 41(17),11837.
20 Hirano M, Shinjo K, Kaneko R, et al. Physical Review Letters, 1991, 67(19),2642.
21 Shinjo K, Hirano M.Surface Science, 1993, 283(1),473.
22 Dienwiebel M, Verhoeven G S, Pradeep N, et al.Physical Review Letters, 2004, 92(12), 126101.
23 Dienwiebel M, Pradeep N, Verhoeven G S, et al. Surface Science, 2005, 576(1-3), 197.
24 Verhoeven G S, Dienwiebel M, Frenken J W. Physical Review B, 2004, 70(16),165418.
25 Zheng Q, Liu Z.Friction, 2014, 2(2), 182.
26 Müser M H.Europhysics Letters, 2004, 66(1), 97.
27 郑泉水, 欧阳稳根, 马明,等. 科技导报, 2016, 34(9), 12.
28 He G, Müser M H, Robbins M O.Science, 1999, 284(5420),1650.
29 Müser M H, Wenning L, Robbins M O.Physical Review Letters, 2001, 86(7), 1295.
30 Liu Z, Yang J, et al.Physical Review Letters, 2012, 108(20), 205503.
31 Zheng Q, et al.Physical Review Letters, 2008, 100(6),067205.
32 Cumings J, Zettl A.Science, 2000, 289(5479), 602.
33 Lu X K, Yu M F, Huang H, et al.Nanotechnology, 1999, 10(3), 269.
34 Zheng Q, Jiang Q.Physical Review Letters, 2002, 88(4), 45503.
35 Liu Z, Boggild P, et al.Nanotechnology, 2011, 22(26), 265706.
36 Novoselov K S, Geim A K, Morozov S V, et al.Science, 2004, 306(5696), 666.
37 Meyer J C, Geim A K, Katsnelson M, et al.Nature, 2007, 446(7131),60.
38 Lee C, Li Q, Kalb W, et al.Science, 2010, 328(5974),76.
39 Lee C, Wei X, Kysar J W, et al.Science, 2008, 321(5887), 385.
40 Wang L F, Ma T B, et al.Nanotechnology, 2014, 25(38),385701.
41 Leven I, Krepel D, Shemesh O, et al.The Journal of Physical Chemistry Letters, 2013, 4(1), 115.
42 Mandelli D, Leven I, et al.Scientific Reports, 2017, 1(1),1.
43 Boyd D A, Lin W H, Hsu C C, et al.Nature Communication, 2015, 6, 6620.
44 Lee J H, Lee E K, Joo W J, et al.Science, 2014, 344(6181), 286.
45 Ma M, Sokolov I M, et al. Physical Review X, 2015, 5(3), 031020.
46 Yang J, Liu Z, Grey F, et al.Physical Review Letters, 2013, 110(25), 255504.
47 Wang W, Dai S, Li X, et al.Nature Communication, 2015, 6, 7853.
48 Dietzel D, Ritter C, Monninghoff T, et al.Physical Review Letters, 2008, 101(12), 125505.
49 Dietzel D, Feldmann M, Schwarz U, et al.Physical Review Letters, 2013, 111(23),235502.
50 Lee C, Li Q, Kalb W, et al.Science, 2010, 328(5974),76.
51 Deng Z, Smolyanitsky A, et al. Nature Materials, 2012, 11(12), 1032.
52 Egberts P, Han G, Liu X Z, et al.ACS Nano, 2014, 8(5),5010.
53 Pawlak R, Ouyang W, et al.ACS Nano, 2016, 10(1),713.
54 欧阳稳根. 结构超润滑新约化模型. 博士学位论文,清华大学, 2016.
55 Zhang R, Zhang Y, Zhang Q, et al.Nature Communication, 2013, 4(4), 1727.
56 Zhang R, Ning Z, Zhang Y, et al.Nature Nanotechnology, 2013, 8(12), 912.
57 Vu C C, Zhang S, et al.Physical Review B, 2016, 94(8),081405.
58 van Wijk M, Dienwiebel M, Frenken J, et al. Physical Review B, 2013, 88(23), 235423.
59 Martin J, Donnet C, Le Mogne T, et al. Physical Review B, 1993, 48(14),10583.
60 Erdemir A.Tribology International, 2004, 37(11-12),1005.
61 Berman D, Deshmukh S A, Sankaranarayanan S K R S, et al. Science, 2015, 348(6239), 1118.
62 Penkov O, Kim H J, Kim H J, et al.International Journal of Precision Engineering and Manufacturing, 2014, 15(3),577.
63 Chengbing W, Shengrong Y, Qi W, et al.Nanotechnology, 2008, 19(22), 225709.
64 Wei L, et al.Surface And Interface Analysis,2013,45(8),1233.
65 Berman D, Deshmukh S A, Sankaranarayanan S K R S, et al.Science, 2015, 348(6239), 1118.
[1] 刘兴光, 张凯锋, 周晖, 冯兴国, 郑玉刚. 超润滑技术的发展现状[J]. 材料导报, 2021, 35(9): 9150-9156.
[2] 崔龙辰, 王军军, 黄伟九. 类聚合物碳薄膜的制备及其摩擦学研究进展[J]. 材料导报, 2019, 33(5): 797-804.
[3] 曹文华, 辛勇, 刘东雷. 注塑充模聚合物流动形态与力学行为分子机制研究*[J]. 《材料导报》期刊社, 2017, 31(2): 142-149.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed