Please wait a minute...
材料导报  2020, Vol. 34 Issue (6): 6033-6038    https://doi.org/10.11896/cldb.19110110
  无机非金属及其复合材料 |
自驱动二氧化锰纳米马达的制备与性能
黄秋月1,2, 张亚茹1,2, 李佳贤1,2, 时霄霄1,2, 缪玮珉2,3, 巫佳思2,4, 杜金志1,2,5,6
1 华南理工大学医学院,广州 510006;
2 华南理工大学生命科学研究院,广州 510006;
3 华南理工大学生物科学与工程学院,广州 510006;
4 华南理工大学生物医学科学与工程学院,广州 510006;
5 华南理工大学国家人体组织功能重建工程技术研究中心,广州 510006;
6 广东省生物医学工程重点实验室,生物医用材料与工程教育部重点实验室,人体组织功能重建省部共建协同创新中心,广州 510006
Preparation and Properties of Self-propelled Manganese Dioxide Nanomotor
HUANG Qiuyue1,2, ZHANG Yaru1,2, LI Jiaxian1,2, SHI Xiaoxiao1,2, MIAO Weimin2,3, WU Jiasi2,4, DU Jinzhi1,2,5,6
1 School of Medicine, South China University of Technology, Guangzhou 510006, China;
2 Institutes for Life Sciences, South China University of Technology, Guangzhou 510006, China;
3 School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China;
4 School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China;
5 National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China;
6 Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Material and Engineering of Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China
下载:  全 文 ( PDF ) ( 7053KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,基于微纳米马达的研究引起了研究者广泛的兴趣,其中,对微米尺度的马达研究占多数,而纳米马达的制备更具有挑战性。本研究介绍了一种制备方法简单、原料来源广泛、尺寸可在纳米至微米尺度范围内精确调控的微纳米马达体系。首先合成了尺寸可控的SiO2纳米颗粒,采用Pickering乳液法制备微米尺寸的胶体囊,裸露的SiO2进一步催化高锰酸钾(KMnO4)还原生成二氧化锰(MnO2)/SiO2Janus纳米颗粒,MnO2催化过氧化氢(H2O2)分解产生氧气,从而推动马达运动。利用动态光散射(DLS)和透射电镜(TEM)表征了SiO2模板的尺寸,其在140nm(SS1)到630nm(SS5)内可控。通过扫描电镜(SEM)观察所形成的胶体囊表面SS1的分布情况,研究了石蜡与SS1质量比对SS1在胶体囊表面分布的影响。结果显示,当二者质量比达到40∶1时,SS1能在石蜡表面实现单层分布,并且有一部分嵌入石蜡中。通过紫外(UV)、DLS、TEM等方法进行表征,证实了自驱动MnO2纳米马达的Janus结构。通过倒置显微镜观察并使用ImageJ、MATLAB等软件进行运动分析,发现SS5纳米马达在0.5%H2O2溶液中的均方位移比在超纯水中长,且扩散系数从超纯水中的0.56μm2/s增加到1.26μm2/s,增加了1.25倍,证实了自驱动MnO2纳米马达的有效运动。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄秋月
张亚茹
李佳贤
时霄霄
缪玮珉
巫佳思
杜金志
关键词:  微纳米马达  自驱动  二氧化锰  过氧化氢    
Abstract: University of Technology, Guangzhou 510006, ChinaIn recent years, the research on micro-/nanomotor has aroused extensive interest, but micron motors account for the majority and the preparation of nanomotors is more challenging. In this study, a kind of micro-/nanomotor system with simple preparation method, wide source of raw materials, and precise size control in the nanometer to micron scale is introduced. We first synthesized size controlled SiO2 nanoparticles. Micron-sized colloidosomes were prepared by Pickering emulsion, which is formed by paraffin wax and water at high temperature. The exposed SiO2 further catalyzed the reduction of potassium permanganate (KMnO4) to produce manganese dioxide (MnO2)/SiO2 Janus nanoparticles, and the MnO2 catalyzed the decomposition of hydrogen peroxide (H2O2) to produce oxygen, thus propelling the motor. We used dynamic light scattering (DLS) and transmission electron microscopy (TEM) to characterize the size of SiO2 template, which can be controlled from 140 nm (SS1) to 630 nm (SS5). The distribution of SS1 on the surface of colloidosomes was observed by scanning electron microscope (SEM), and the influence of the paraffin/SS1 mass ratio on the surface distribution of colloidosomes was studied. The results showed that when the mass ratio of the two reached 40∶1, SS1 could be distributed in a single layer on the surface of paraffin, and part of it was embedded in the paraffin. The Janus structure of the self-propelled MnO2 nanomotor was confirmed by ultraviolet (UV) spectrum, DLS and TEM. The motion analysis was carried out by using the inverted microscope and software such as Image J and MATLAB, it was found that the mean square displacement of SS5 nanomotor in 0.5% H2O2 solution was much longer than that in ultrapure water. Moreover, the diffusion coefficient increased from 0.56 μm2/s to 1.26 μm2/s, an increase of 1.25 times, which confirmed the effective motion of the self-propelled MnO2 nanomotor.
Key words:  micro-nanomotor    self-propel    manganese dioxide    hydrogen peroxide
               出版日期:  2020-03-25      发布日期:  2020-03-12
ZTFLH:  TB383  
基金资助: 广东省杰出青年基金(2017A030306018)
作者简介:  黄秋月,硕士研究生,研究方向为基于纳米药物载体的肿瘤治疗;杜金志,华南理工大学生命科学研究院、医学院,特聘研究员、博士研究生导师。2006年和2011年毕业于中国科学技术大学,分获学士和博士学位。2012年赴美国埃默里大学 (Emory University)医学院开展博士后研究,2016年加入华南理工大学。主要从事生物医用材料、纳米药物载体和递送领域的研究。在JACS、PNAS、Angew. Chem. Int. Ed.、ACS Nano、Nano Lett.等国内外重要期刊发表文章40多篇。
引用本文:    
黄秋月, 张亚茹, 李佳贤, 时霄霄, 缪玮珉, 巫佳思, 杜金志. 自驱动二氧化锰纳米马达的制备与性能[J]. 材料导报, 2020, 34(6): 6033-6038.
HUANG Qiuyue, ZHANG Yaru, LI Jiaxian, SHI Xiaoxiao, MIAO Weimin, WU Jiasi, DU Jinzhi. Preparation and Properties of Self-propelled Manganese Dioxide Nanomotor. Materials Reports, 2020, 34(6): 6033-6038.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110110  或          http://www.mater-rep.com/CN/Y2020/V34/I6/6033
1 Guix M, Mayorga-Martinez C C, Merkoci A. Chemical Reviews, 2014, 114 (12), 6285.
2 Wang W, Duan W T, Ahmed S, et al. Nano Today, 2013, 8 (5), 531.
3 Ye Y C, Luan J B, Wang M, et al. Chemistry-A European Journal, 2019, 25 (37), 8663.
4 Wang H, Pumera M. Chemical Reviews, 2015, 115 (16), 8704.
5 Zenerino A, Peyratout C, Aimable A. Journal of Colloid and Interface Science, 2015, 450,174.
6 Hong L, Jiang S, Granick S. Langmuir, 2006, 22 (23), 9495.
7 Li J X, de Avila B E F, Gao W, et al. Science Robotics, 2017, 2 (4), eaam6431.
8 Jain R K, Stylianopoulos T. Nature Reviews Clinical Oncology, 2010, 7 (11), 653.
9 Sanchez S, Soler L, Katuri J. Angewandte Chemie-International Edition, 2015, 54 (5), 1414.
10 Szatrowski T P, Nathan C F. Cancer Research, 1991, 51 (3), 794.
11 Wang H, Zhao G J, Pumera M. Journal of the American Chemical Society, 2014, 136 (7), 2719.
12 Wang H, Zhao G J, Pumera M. Chemistry-A European Journal, 2013, 19 (49), 16756.
13 Ma X, Jannasch A, Albrecht U R, et al. Nano Letter, 2015, 15 (10), 7043.
14 Wu Z G, Lin X K, Zou X, et al. ACS Applied Materials & Interfaces, 2015, 7 (1), 250.
15 Safdar M, Do Minh T, Kinnunen N, et al. ACS Applied Materials & Interfaces, 2016, 8 (47), 32624.
16 Song M L, Liu T, Shi C R, et al. ACS Nano, 2016, 10 (1), 633.
17 Safdar M, Wani O M, Janis J. ACS Applied Materials & Interfaces, 2015, 7 (46), 25580.
18 Wang L L, Chen J, Feng X M, et al. RSC Advances, 2016, 6 (70), 65624.
19 Zou H, Wu S S, Shen J. Chemical Reviews, 2008, 108 (9), 3893.
20 Ibrahim I A, Zikry A, Sharaf M A. Journal of the American Chemical Society, 2010, 6 (11), 985.
21 Jiang S, Granick S. Langmuir, 2008, 24 (6), 2438.
22 Yang G, Xu L, Chao Y, et al. Nature Communications, 2017, 8 (1), 902.
[1] 郭潇, 周玉洁, 高静茹, 余薇, 许翠, 韩翠平. 可激活荧光-磁共振双模态纳米材料的制备与性能[J]. 材料导报, 2020, 34(Z1): 97-102.
[2] 李绘, 张燕, 张玉琰, 宋风娟, 郦雪, 王浩宇, 曹晓强, 吕宪俊. [BMIM][BF4]-MnO2@SS阳极的制备及对氧氟沙星废水的降解[J]. 材料导报, 2020, 34(6): 6029-6032.
[3] 杨路, 赵秋莹, 申明霞, 裘进浩. 二氧化锰纤维/聚偏氟乙烯复合材料薄膜的制备及压电性能[J]. 材料导报, 2020, 34(24): 24145-24149.
[4] 王桂玲, 杜梦宇, 马陈超, 牛星雨, 张卫民, 王欣昱. 超薄二氧化锰@碳纳米球复合材料的制备及电容特性[J]. 材料导报, 2020, 34(16): 16016-16019.
[5] 徐祺, 王三反, 孙百超. 双膜三室同槽电解金属锰和微粒电解二氧化锰的控制因素[J]. 材料导报, 2020, 34(14): 14016-14022.
[6] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[7] 黄文欣, 李军, 徐云鹤. 二氧化锰基超级电容器的研究进展[J]. 材料导报, 2018, 32(15): 2555-2564.
[8] 王炯, 徐瑞东, 于伯浩, 韩莎, 何世伟, 陈步明. PbO2-MnO2共沉积电化学行为研究*[J]. 《材料导报》期刊社, 2017, 31(8): 35-40.
[9] 赵 兵, 祁 宁, 张德锁, 李青松, 张克勤. 适用于生物体系的自驱动纳米技术研究进展[J]. 材料导报, 2017, 31(1): 126-130.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed