Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16083-16086    https://doi.org/10.11896/cldb.19120021
  金属与金属基复合材料 |
激光选区熔化与铸造成形TC4钛合金的力学性能分析
宗学文1, 刘文杰1, 张健1, 杨雨蒙2, 高中堂1
1 西安科技大学机械工程学院,西安 710054;
2 中航光电科技股份有限公司,洛阳 471023
Analysis of Mechanical Properties of TC4 Titanium Alloy Formed by Laser Selective Melting and Casting
ZONG Xuewen1, LIU Wenjie1, ZHANG Jian1, YANG Yumeng2, GAO Zhongtang1
1 College of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China;
2 AVIC Optoelectronic Technology Co., Ltd., Luoyang 471023, China
下载:  全 文 ( PDF ) ( 4139KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 借助有限元模拟、光学显微镜(OM)、扫描电镜(SEM)、能谱分析(EDS)和维氏硬度仪研究了激光选区熔化和铸造成形TC4钛合金的微观组织演变及力学性能,进一步分析了不同成形条件下液态金属凝固冷却对其微观组织和力学性能的影响。结果表明:激光选区熔化与铸造成形的TC4钛合金分别为针状马氏体α′相的网篮组织、α+β相的魏氏组织。与铸造相比,激光选区熔化成形TC4钛合金具有极快的冷却速率(1.78×107 ℃·s-1)和较高的温度梯度,元素类型相同,晶体取向明显。同时,利用激光选区熔化 (SLM) 技术成形的TC4试样的抗拉强度、屈服强度、伸长率和硬度分别为1 120.83 MPa、916.31 MPa、9.5%和123.04HV,而铸造试样的抗拉强度、屈服强度、伸长率和硬度分别为917.67 MPa、786.23 MPa、8.0%和77.876HV。与铸造成形相比,SLM成形的TC4试样的抗拉强度、屈服强度、伸长率和硬度增大,分别提升了22.14%、16.54%、18.75%和58%,因此激光选区熔化成形的TC4试样具有较好的力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宗学文
刘文杰
张健
杨雨蒙
高中堂
关键词:  激光选区熔化  熔模铸造  冷却速度  微观组织  力学性能    
Abstract: With the help of finite element simulation, optical microscope (OM), scanning electron microscope (SEM), energy spectrum analysis (EDS), and Vickers hardness tester, the microstructure evolution and mechanical properties of TC4 titanium alloy by laser selective mel-ting and cast were studied. The effects of solidification and cooling of liquid metal on its microstructure and mechanics under different forming conditions were analyzed. The results show that laser selective melting and casting were basket structure of the needle-shaped martensite α′ phase and the Wei’s structure of α+β phase. Compared with casting, the laser selective melting TC4 titanium alloy had an extremely fast cooling rate (1.78×107 ℃·s-1) and a large temperature gradient, with the same element type and obvious crystal orientation. Meanwhile, the tensile strength, yield strength, elongation and hardness of the TC4 specimens formed by SLM were 1 120.83 MPa, 916.31 MPa, 9.5% and 123.04HV, while the tensile strength, yield strength, elongation and hardness of the TC4 specimens formed by casting were 917.67 MPa, 786.23 MPa, 8.0% and 77.876HV, compared with cast, the tensile strength, yield strength, elongation and hardness of TC4 specimens formed by SLM forming increased by 22.14%, 16.54% ,18.75% and 58%. Therefore,laser selective melting had better mechanical performance index.
Key words:  laser selective melting    investment casting    cooling rate    microstructure    mechanical property
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  TG665  
  TG146  
基金资助: 国家自然科学基金(51875452)
通讯作者:  a15236617652@163.com   
作者简介:  宗学文,西安科技大学,副教授。2008年7月毕业于西安交通大学,取得机械工程博士学位。主要从事基于3D打印快速铸造方向工艺的研发,在国内外重要期刊发表文章40多篇,申报发明专利30余项。
引用本文:    
宗学文, 刘文杰, 张健, 杨雨蒙, 高中堂. 激光选区熔化与铸造成形TC4钛合金的力学性能分析[J]. 材料导报, 2020, 34(16): 16083-16086.
ZONG Xuewen, LIU Wenjie, ZHANG Jian, YANG Yumeng, GAO Zhongtang. Analysis of Mechanical Properties of TC4 Titanium Alloy Formed by Laser Selective Melting and Casting. Materials Reports, 2020, 34(16): 16083-16086.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120021  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16083
1 Wu S,Lu Y,Huang T,et al. Journal of Alloys and Compounds,2016, 672(5),643.
2 Zhao Z,Chen J,Zhao X,et al. Rare Metal Materials and Engineering, 2017, 46(7),1792.
3 Li H, Huang B, Sun F, et al. Rare Metal Materials and Engineering, 2013, 42, 209.
4 Wei S Y,He Y,Zhu P. In: The 14th Annual Conference of Materials Science and Alloy Processing of China Society of Non-ferrous Metals. Sanya,China,2011,pp.367(in Chinese).
魏寿庸,何瑜,祝瀑. 中国有色金属学会第十四届材料科学与合金加工学术年会.三亚,2011,pp.367.
5 Zong X W,Liu W J,Yang X D,et al. Special Casting and Nonferrous Alloy, 2019,39(10),1106(in Chinese).
宗学文,刘文杰,杨学东,等.特种铸造及有色合金,2019,39(10),1106.
6 Guo Z Y,Hou H,Zhao Y H,et al. Foundry Technology, 2011,32(3),392(in Chinese).
郭志宏,候华,赵宇宏,等.铸造技术,2011,32(3),392.
7 Zong X W,Liu W J,Xiong C,et al. Journal of Aeronautical Materials, 2019,39(5),103(in Chinese).
宗学文,刘文杰,熊聪.航空材料学报,2019,39(5),103.
8 Hyun J J, Jaeho C, Byoung-Soo L, et al. Materials Science and Technology, 2019,35(3),248.
9 Li H J.Comparative studying of Ti4 titanium alloy prepared by 3D prin-ting,traditional casting and forging. Master’s Thesis, North China University of Technology, China,2019(in Chinese).
李豪杰.激光选区熔化与传统加工TC4钛合金组织与力学性能对比研究.硕士学位论文,北方工业大学,2019.
10 Ou M G,Xia Q F,Song H C,et al. Rare Metal Materials and Enginee-ring, 2019,48(2),639.
11 Zong X W,Liu W J,Yang X D,et al. Rare Metal Materials and Enginee-ring, 2020,49(5),1681.
12 Rubenchik A, Wu S, Mitchell S, et al. Applied Optics, 2015, 54(24), 7230.
13 Gu D, Meiners W, Wissenbach K,et al.International Materials Review, 2012, 57 (3),133.
14 Zhou T J.Experimental investigation and finite element analysis on centri-fugal casting of Al-4.5%Cu alloys. Master’s Thesis, Harbin Institute of Technology,China,2010(in Chinese).
周同金. Al-4.5%Cu合金离心铸造工艺实验研究及有限元分析. 硕士学位论文,哈尔滨工业大学, 2010.
15 Zhou Y H, Zhang Z H, Wang Y P, et al. Additive Manufacturing, 2019, 25,204.
16 Wei P, Wei Z Y, Chen Z, et al. Applied Surface Science, 2017, 408, 38.
17 Liu T T, Zhang C D, Liao W H, et al. Chinese Journal of Laser,2016,43(12),1202004.
[1] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[2] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[3] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[4] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[5] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[6] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[7] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[8] 李宸庆, 侯雅青, 苏航, 潘涛, 张浩. 铁/镍元素粉末的选区激光熔化过程扩散动力学研究[J]. 材料导报, 2020, 34(Z1): 370-374.
[9] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[10] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[11] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[12] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[13] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[14] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[15] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed