Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 412-415    
  金属与金属基复合材料 |
溶剂对PMMA基底上金属薄膜形貌的影响
薛秀丽1,2, 曾超峰1, 王世斌2, 李林安2, 王志勇2
1 湖南科技大学岩土工程稳定控制与健康监测湖南省重点实验室,湘潭 411201
2 天津大学力学系,天津300072
The Influence of Solvent on the Morphology of Metal Film on PMMA Substrate
XUE Xiuli1,2, ZENG Chaofeng1, WANG Shibin2, LI Lin’an2, WANG Zhiyong2
1 Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring, Hunan University of Science &Technology, Xiangtan 411201
2 Department of Mechanics, Tianjin University, Tianjin 300072
下载:  全 文 ( PDF ) ( 1923KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究溶剂对金属薄膜/聚合物基底结构的表界面破坏的影响,利用直流磁控溅射法在PMMA基底上沉积金属钛、铜、铝和镍薄膜,采用无水乙醇、丙酮、三氯甲烷和水四种溶剂接触金属薄膜/基底的表面,用光学显微镜观测薄膜的形貌变化。结果表明:除了水以外,其他溶剂通过薄膜缺陷处渗透到薄膜/基底界面后接触PMMA基底,无水乙醇和丙酮与PMMA基底发生溶胀反应,导致膜基界面断裂,薄膜脱离界面发生屈曲,并发生动态扩展直至稳定;三氯甲烷与PMMA基底发生溶解反应,使得膜基界面断裂,薄膜先脱离界面产生屈曲然后塌陷至界面形成褶皱。薄膜基底结构界面的破坏涉及到溶剂与聚合物基底的物化反应,即能否与基底发生溶胀或者溶解。由此可见,溶剂会对金属膜/聚合物基底结构的完整性产生影响,并且缩短结构的使用寿命。但是可以通过这种方式来制造规则、可控的薄膜屈曲模式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛秀丽
曾超峰
王世斌
李林安
王志勇
关键词:  无水乙醇  PMMA基底  界面反应  金属薄膜    
Abstract: In order to study the effect of solvents on the surface and interface damage of metal film/polymer substrate structures, we deposited metal titanium, copper, aluminum and nickel thin films on poly(methyl methacrylate) (PMMA) substrates by dc magnetron sputtering method. Four kinds of solvent including anhydrous ethanol, acetone, chloroform and water were used to contact the surface of film/substrate respectively. An optical microscope was used to observe the film morphology. Results show that other than water, the ethanol and acetone penetrated to the film/substrate interface, and then swelled the PMMA substrate, causing interface failure and buckles of the film from the interface, as well as some dynamic propagations. While chloroform dissolved the PMMA substrate, causing interface failure and buckles of the film then collapsing to the substrate. Interface damages are related to physicochemical reaction between solvents and polymers, that is to say whether can solvents swell or dissolve with the substrate. Film delaminating mechanism relies on the stress state of thin film, interfacial toughness as well as the sensitivity of the solvent to the polymer substrate. It can be seen that the solvent will affect the integrity of the metal film/polymer substrate structure and reduce its service life. Yet to the other hand, through this method, regular and controllable patterns of thin films will be manufactured by perfecting experiments and theories.
Key words:  ethanol    PMMA substrate    interface reaction    metal films
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  O647.4  
基金资助: 国家自然科学基金(11602083);湖南省自然科学基金(2016JJ6044)
作者简介:  薛秀丽,湖南科技大学,副教授。2014年6月毕业于天津大学,固体力学博士专业位。主要从事薄膜和智能材料的力学性能及表征。在国内外重要期刊发表文章20多篇。xlxue@hnust.edu.cn
引用本文:    
薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
XUE Xiuli, ZENG Chaofeng, WANG Shibin, LI Lin’an, WANG Zhiyong. The Influence of Solvent on the Morphology of Metal Film on PMMA Substrate. Materials Reports, 2019, 33(z1): 412-415.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/412
1 Goyal S, Srinivasan K, Subbarayan G, et al. Thin Solid Films,2010,518(8),2056.
2 Taylor A A, Cordill M J, Bowles L, et al. Thin Solid Films,2013,531,354.
3 Möller J, Reiche D, Bobeth M, et al. Surface and Coatings Technology,2002,150(1),8.
4 Waters P, Volinsky A A. Experimental Mechanics,2006,47(1),163.
5 Uchiyama T, Kato M, Yoshida T. Journal of Power Sources,2012,206,37.
6 Peponas S, Guedda M, Benlahsen M. Solid State Communications,2008,146(1),78.
7 Andreeva D V, Fix D, et al. Advanced Materials,2008,20(14),2789.
8 Som T, Bhargava S, Malhotra M, et al. Applied Physics Letters,1998,72(23),3014.
9 Vlassak J J, Lin Y, Tsui T Y. Materials Science and Engineering: A,2005,391(1),159.
10 Lin Y, Tsui T Y, Vlassak J J. Acta Materialia,2007,55(7),2455.
11 Lin Y, Vlassak J J, Tsui T Y, et al. MRS Proceedings,2011,766,E9.4.
12 Abdallah A A, Bouten P C P, den Toonder J M J, et al. Thin Solid Films,2008,516(6),1063.
13 Vandeparre H, Gabriele S, Brau F, et al. Soft Matter,2010,6(22),5751.
14 Vandeparre H, Damman P.Physical Review Letters,2008,101(12),124301
15 Lee K, Lee S, Khang D Y, et al. Soft Matter,2010,6(14),3249.
16 薛秀丽. 沉积在聚合物基底上微纳米金属薄膜的屈曲和断裂行为研究.博士学位论文,天津大学,2014.
17 贾海坤. 基底上金属纳米薄膜屈曲行为及其破坏机理研究,博士学位论文,天津大学,2013.
18 Vandeparre H, Damman P. Physical Review Letters,2008,101(12),124301.
19 Baffoun A, Haidara H, Dupuis D, et al. Langmuir,2007,23(18),9447.
[1] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[2] 庄晓东, 李荣兴, 俞小花, 谢刚, 和晓才, 徐庆鑫. 固相法制备钛酸锂电极材料[J]. 材料导报, 2019, 33(16): 2654-2659.
[3] 王刘珏,薛松柏,刘晗,林尧伟,陈宏能. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(15): 2483-2489.
[4] 许君君, 黄金华, 盛伟, 王肇肇, 赵文凯, 李佳, 杨晔, 万冬云, 宋伟杰. 超薄金属透明导电膜及其应用研究进展[J]. 材料导报, 2019, 33(11): 1875-1881.
[5] 侯斌, 刘凤美, 王宏芹, 李琪, 万娣, 张宇鹏. 不同温度下Sn-0.7Cu钎料在非晶Fe84.3Si10.3B5.4合金上的润湿行为及界面特征[J]. 材料导报, 2018, 32(18): 3208-3212.
[6] 鲍泥发,胡小武,徐涛. SnAgCu-xBi/Cu焊点界面反应及微观组织演化[J]. 《材料导报》期刊社, 2018, 32(12): 2015-2020.
[7] 马坤, 刘亚, 涂浩, 苏旭平, 王建华. 镁含量和硅对铁-锌铝镁合金固-液扩散偶中Fe-Al反应层的影响[J]. 《材料导报》期刊社, 2017, 31(6): 61-65.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed