Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 343-347    
  金属与金属基复合材料 |
Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响
韩应强1, 孙爱民1,2, 潘晓光1, 张伟1, 赵锡倩1
1 西北师范大学物理与电子工程学院, 兰州 730070
2 甘肃省原子分子物理与功能材料重点实验室,兰州 730070
Doping Effect of Y3+ on Structure and Magnetic Properties of Ni-Cu-Zn Ferrite Nanoparticles
HAN Yingqiang1, SUN Aimin1,2, PAN Xiaoguang1, ZHANG Wei1, ZHAO Xiqian1
1 College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070
2 Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, Lanzhou 730070
下载:  全 文 ( PDF ) ( 3265KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用溶胶-凝胶法在950 ℃下烧结得到了Y3+取代部分Fe3+的Ni0.3Cu0.2Zn0.5YxFe2-xO4 铁氧体,掺杂量分别为0、0.025、0.05、0.075和0.1。对样品的结构和磁性能进行了研究,发现少量的Y3+掺杂并不会破坏Ni-Cu-Zn铁氧体的晶体结构,但是当掺杂量大于0.025时会有少量YFeO3杂相生成。随着掺杂量的增加,晶格常数先减小后增大,晶粒尺寸和饱和磁化强度先增大后减小。与纯的Ni0.3Cu0.2Zn0.5Fe2O4铁氧体相比,掺杂后的样品的矫顽力、剩磁、矩形比和居里温度都增加,但均表现为顺磁性。当掺杂量为0.025时,样品的饱和磁化强度达到了68.98 emu/g,居里温度升高到215 ℃。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩应强
孙爱民
潘晓光
张伟
赵锡倩
关键词:  Ni-Cu-Zn铁氧体  Y3+掺杂  结构性能  磁性能    
Abstract: The Ni0.3Cu0.2Zn0.5YxFe2-xO4 (where x= 0, 0.025, 0.05, 0.075, 0.1) ferrite with Y3+ substituted partial Fe3+ was synthesized by sol-gel method at 950 ℃. The structure and magnetic properties of the sample were studied. It was found that a small amount of Y3+ doping does not destroy the crystal structure of Ni-Cu-Zn ferrite, but when the doping amount is more than 0.025, a small amount of YFeO3 foreign phase is formed. As the doping amount increases, the lattice constant first decreases and then increases, and the grain size and saturation magnetization increase first and then decrease. Compared with pure Ni0.3Cu0.2Zn0.5Fe2O4 ferrite, the coercivity, remanence, squareness ratio and Curie temperature of the doped samples increased, but all samples showed a paramagnetism. When the doping amount is 0.025, the saturation magnetization reaches 68.98 emu/g, and the Curie temperature increased to 215 ℃.
Key words:  Ni-Cu-Zn ferrite    doping Y3+    structural properties    magnetic properties
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  O469  
作者简介:  韩应强,西北师范大学物理与电子工程学院凝聚态物理专业硕士研究生在读,研究方向为磁性纳米材料。孙爱民,1985年6月毕业于西北师范大学物理系,1985年7月至今在西北师范大学任教,其中于1993年9月至1998年6月于南京大学学习,并取得博士学位。现为西北师范大学物理与电子工程学院教授、副院长、硕士研究生导师,甘肃省政府采购专家,主要从事超导和磁性材料的研究,发表研究论文60余篇。sunam@nwnu.edu.c
引用本文:    
韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
HAN Yingqiang, SUN Aimin, PAN Xiaoguang, ZHANG Wei, ZHAO Xiqian. Doping Effect of Y3+ on Structure and Magnetic Properties of Ni-Cu-Zn Ferrite Nanoparticles. Materials Reports, 2019, 33(z1): 343-347.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/343
1 Tsakaloudi V, Eleftheriou E, Stoukides M, et al. Journal of Magnetism and Magnetic Materials,2007,318(1),58.
2 刘敏, 赖振宇, 卢忠远, 等. 材料导报:研究篇,2009,23(10),52.
3 Yue Z, Zhou J, Gui Z, et al. Journal of Magnetism and Magnetic Materials,2003,264(2),258.
4 Roy P K, Nayak B B, Bera J. Journal of Magnetism and Magnetic Materials,2008,320(1),1128.
5 Mürbe J, Töpfer J. Journal of Magnetism and Magnetic Materials,2012,324(4),578.
6 Roy P K, Bera J. Materials Research Bulletin,2007,42(1),77.
7 Dar M A, Verma V, Gairola S P, et al. Applied Surface Science,2012,258(14),5342.
8 Gabal M A, Asiri A M, AlAngari Y M. Ceramics International,2011,37(2),2625.
9 Rezlescu N, Rezlescu e, Pasnicu C, et al. Jounal of Physics Condensed Matter,1999,6(29),5707.
10 Mahmoud M H, Sattar A. Journal of Magnetism and Magnetic Materials,2004,277(1),101.
11 Dwevedi S, Bharathi K K, Markandeyulu G. IEEE Transactions on Magnetics,2009(45),4253.
12 Atassi Y, Tally M, Ira. Chemical Society,2006,3(3),242.
13 Sattar A A, Esayed H M, Elshokrofy K M, et al. Journal of Apply Scie-nce,2005,5(2),162.
14 Singh A, Verma A, Thakur O, et al. Journal of Material Letters,2003,57(5),1040.
15 Batoo K M, Ansari M S. Nanoscale Research Letters,2012,7(1),112.
16 Shirsath S E, Kadam R H, Patange S M, et al. Applied Physics Letters,2012,100(4),1541.
17 Jadhav S S, Shirsath S E, Patange S M, et al. Journal of Apply Physics,2010,108(9),381.
18 Liu Z, Peng Z, Lv C, et al. Ceramics International,2016,43(3),1449.
19 陈明洁, 沈辉, 刘海峰, 等. 高校化学工程学报,2015,29(2),418.
20 Ateia E, Ahmed M A, Elaziz A K. Journal of Magnetism and Magnetic Materials,1949,311(2),545.
21 Li B, Yue Z X, Qi X W, et al. Materials Science and Engineering B,2003,99(1),252.
22 Ahmed M A, Mansour S F, Afifi M. Journal of Magnetism and Magnetic Materials,2012,324(1),4.
23 Pan X G, Sun A M, Han Y Q, et al. Modern Physics Letter B,2018,32(27),185.
24 Eltabey M M, El-Shokrofy K M, Gharbia S A. Journal of Alloys and Compounds,2011,509(5),1.
25 Wang S F, Yang H C, Hsu Y F, et al. Journal of Magnetism and Magnetic Materials,2015,374,381.
[1] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[2] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[3] 刘涛, 马垒, 赵世谦, 马冬冬, 李林, 成钢. 沉积厚度对L10-FePd颗粒膜结构和磁性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 525-527.
[4] 魏玉鹏, 王海燕, 兰伟, 卢学峰, 喇培清, 马吉强. 溶液燃烧法合成Co3O4纳米粉体及热处理研究[J]. 《材料导报》期刊社, 2017, 31(6): 29-33.
[5] 戴剑锋,田西光,闫兴山,李维学,王青. 静电纺丝法制备的Co0.6Ni0.3Cu0.1Fe2O4和Co0.6Ni0.3Zn0.1Fe2O4纳米纤维的结构及磁性能*[J]. 材料导报编辑部, 2017, 31(22): 30-34.
[6] 李德超, 董俊慧, 陈海鹏, 王海燕. 退火张力对无取向硅钢再结晶织构和磁性能的影响*[J]. 《材料导报》期刊社, 2017, 31(2): 92-95.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed