Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 331-335    
  金属与金属基复合材料 |
Fe-Mn合金在生物医学方面的应用及前景
刘玉玲1, 张修庆2
1 华东理工大学材料科学与工程学院,上海 200237;
2 华东理工大学承压系统安全科学教育部重点实验室,上海 200237
Application and Prospect of Biomedical Fe-Mn Alloy
LIU Yuling1, ZHANG Xiuqing2
1 School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237;
2 Key Laboratory of Pressure System Safety Science, Ministry of Education, East China University of Science and Technology, Shanghai 200237
下载:  全 文 ( PDF ) ( 1560KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 生物可降解支架是在植入手术后血管修复期间为血管提供一定的支撑作用,然后预期在血管修复完成后一段时间内,通过与体内环境的相互作用转化成无毒性的降解产物被人体所吸收或排出体外。因此,人们对作为可降解支架的金属材料的力学性能、耐腐蚀性、降解特性、生物相容性等都提出了严格的要求。
近年来,铁基合金作为可降解金属材料成为生物医学领域新的研究热点。纯铁是人体必需的微量元素之一,且具有优异的力学特性、耐腐蚀性、降解特性、生物性能以及加工成型性,这使得铁基合金作为生物医用可降解材料成为可能。
然而,纯铁的降解速率过慢,这是阻碍其作为生物医用金属材料的主要问题之一。合金化在改善铁基材料降解性能的同时也可以改善力学性能,从而提高铁基材料的综合性能。在提高降解速率的同时,铁基材料也应保证足够的力学性能来支撑血管,并且力学性能越好、支架壁越薄、质量越小,则越能缩短降解时间,降解产物越少,对人体的毒性也越小。
本文综述了铁基合金作为支架材料的研究现状,以及目前报道的铁锰合金的力学性能、腐蚀降解性能以及体外细胞相容性,并重点介绍了铁锰合金在生物可降解支架方面的研究现状以及需解决的关键问题,同时给出可能的解决方案。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘玉玲
张修庆
关键词:  生物医用Fe-Mn合金  粉末冶金  力学性能  降解性能    
Abstract: After the implantation operation, the biodegradable stent provides a certain supporting effect for the blood vessels during vasculars’ repairing, which is expected to convert into some non-toxic degradation products by interacting with the internal environment and then absorbed or excreted by the body within a certain time when the repairing is done. Therefore, to be degradable stents, strict requirements have been placed on the mechanical properties, corrosion resistance, degradation characteristics, biocompatibility, and other properities of metal materials.
In recent years, iron-based alloys, as degradable metal materials, have become a new research hotspot in biomedical field. Since pure iron is one of the essential trace elements in the human body, and excellent in mechanical properties, corrosion resistance, degradation characteristics, biological properties and processing formability, it is potential to be iron-based alloys as biomedical degradable materials.
However, pure iron has a slow degradation rate, which is one of the major problems that hinder its biomedical application. Alloying is expected to improve its degradation properties, mechanical properties, eventually as well as the overall performance of iron-based materials. While increa-sing degradation rate, iron-based materials should also be required to ensure adequate mechanical properties to support the blood vessels. And better mechanical properties, thinner stent as well as lighter mass, can ensure a shorter degradation time, which provides less degradation pro-ducts and toxic to the human body.
This paper reviews the research status of iron-based alloys as scaffold materials, as well as the mechanical properties, corrosion, degradation properties and in vitro cell compatibility of iron-manganese alloys. Meanwhile the present research status of ferromanganese alloys in biodegradable stents and key issues to be solved are mainly focused, as well as several potential solutions.
Key words:  biomedical Fe-Mn alloy    powder metallurgy    mechanical properties    degradation performance
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  R318.08  
通讯作者:  zhangxq@ecust.edu.cn   
作者简介:  刘玉玲,2017年6月毕业于合肥学院,获得工学学士学位。现为华东理工大学材料科学与工程学院硕士研究生,在张修庆副教授的指导下进行研究。目前主要研究领域为生物可降解铁锰合金。
张修庆,华东理工大学副教授,硕士研究生导师。2006年博士研究生毕业于上海交通大学材料加工工程专业,毕业后到华东理工大学工作至今。其中2014.7—2015.2到美国伦斯勒理工学院进行访问、合作研究。在国内外学术期刊上发表论文60余篇,申请国家发明专利11项。其团队主要研究方向包括:表面工程技术,先进制造技术,材料的合成、结构与性能研究,新型合金材料、材料的腐蚀、磨损及防护,纳米材料制备、应用与工程,金属基复合材料的研制与开发等。负责完成科研项目10多项,已培养出硕士20余名。
引用本文:    
刘玉玲, 张修庆. Fe-Mn合金在生物医学方面的应用及前景[J]. 材料导报, 2019, 33(Z2): 331-335.
LIU Yuling, ZHANG Xiuqing. Application and Prospect of Biomedical Fe-Mn Alloy. Materials Reports, 2019, 33(Z2): 331-335.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/331
1 Zheng Y F, Gu X N, Witte F. Materials Science and Engineering R Reports,2014,77,1.
2 郑玉峰,刘彬,顾雪楠.材料导报:综述篇,2009,23(1),1.
3 Peuster M, Hesse C, Schloo T, et al. Biomaterials,2006,27(28),4955.
4 何进.基于电沉积的可生物降解铁合金的研究.博士学位论文,西北工业大学,2017.
5 Schomig A. Circulation,1994,90(6),2716.
6 Waksman R. Journal of Interventional Cardiology,2006,19(5),414.
7 Serruys P W, Kutryk M J B, Ong A T L. New England Journal of Medicine,2006,354(5),483.
8 郑玉峰,杨宏韬.金属学报,2017,53(10),1227.
9 Bowen P K, Shearier E R, Zhao S, et al. Advanced Healthcare Materials,2016,5(10),1121.
10 Erinc M, Sillekens W H, Mannens R, et al. In: Mangnesium Technology 2009. San Francisco, USA,2009.
11 Andrews N C. The New England Journal of Medicine,1999,341(26),1986.
12 Hermawan H, Dubé D, Mantovani D. Acta Biomaterialia,2009,6(5),1693.
13 Mani G, Feldman M D, Patel D, et al. Biomaterials,2007,28(9),1689.
14 Moravej M, Purnama A, Fiset M, et al. Acta Biomaterialia,2010,6(5),1843.
15 Cheng J, Liu B, Wu Y H, et al. Journal of Materials Science & Technology,2013,29(7),619.
16 Nie F L, Zheng Y F, Wei S C, et al. Biomedical Materials,2010,5(6),1.
17 Lin W J, Zhang G, Cao P, et al. Journal of Biomedical Materials Research Part B: Applied Biomaterials,2015,103(4),764.
18 Peuster M, Wohlsein P, Brügmann M, et al. Heart,2001,86(5),563.
19 Zhu S, Huang N, Xu L, et al. Materials Science & Engineering: C (Materials for Biological Applications),2009,29(5),1589.
20 Mueller P P, May T, Perz A, et al. Biomaterials,2006,27(10),2193.
21 Zhu X M, Zhang Y S. Corrosion,1998,54,3.
22 徐文利,陆喜,谭丽丽,等.金属学报,2011(10),1312.
23 Erikson K M, Syversen T, Aschner J L, et al. Environ Toxicol Pharma-col,2005,19(3),415.
24 张成燕,宋帆,王珊玲,等.金属学报,2015,51(2),201.
25 Revie R W, Uhlig H H. Corrosion and corrosion control: An introduction to corrosion science and engineering (Fourth edition),John Wiley & Sons, Inc., USA,2008,pp.30.
26 Schinhammer M, Hänzi A C, Löffler J F, et al. Acta Biomaterialia,2010,6(5),1705.
27 Beattie J H, Avenell A. Nutrition Research Reviews,1992,5(1),167.
28 Hermawan H, Dubé D, Mantovani D. Journal of Biomedical Materials Research Part A,2010,93A(1),1.
29 Heiden M, Walker E, Nauman E, et al. Journal of Biomedical Materials Research Part A,2015,103(1),185.
30 apek J, Kubásek J, Vojtěch D, et al. Materials Science and Engineering C: Materials for Biological Applications,2016,58,900.
31 Chou D T, Wells D, Hong D, et al. Acta Biomaterialia,2013,9(10),8593.
32 Hermawan H, Purnama A, Dube D, et al. Acta Biomaterialia,2010,6(5),1852.
33 Heiden M, Kustas A, Chaput K, et al. Journal of Biomedical Materials Research Part A,2015,103(2),738.
34 Hermawan H, Alamdari H, Mantovani D, et al. Powder Metallurgy,2008,51(1),38.
35 Zhang Q, Cao P. Materials Chemistry and Physics,2015,163,394.
36 Drynda A, Hassel T, Bach F W, et al. Journal of Biomedical Materials Research Part B: Applied Biomaterials,2015,103(3),649.
37 Pennington J A. Food Additives and Contaminants,1991,8(1),97.
38 Song G. Corrosion Science,2007,49(4),1696.
39 Supannee S, Ravin J, Hazel E, et al. British Journal of Nutrition,2004,91(3),403.
40 郭芝斌.Fe-Mn-Si系形状记忆合金形状记忆效应及耐腐蚀性能的研究.博士学位论文,西南石油大学,2016.
41 Liu B, Zheng Y F, Ruan L Q. Materials Letters,2011,65(3),540.
42 陈泳.甘肃科技,2005,21(5),194.
43 毛丽贺,王玉林,万怡灶,等.金属热处理,2009,34(10),19.
44 王琳霞.塑料科技,2002(1),37.
45 Hermosilla D, Cortijo M, Huang C P. Chemical Engineering Journal,2009,155(3),637.
46 Waksman R, Pakala R, Yaffour R, et al. Journal of Interventional Car-diology,2008,21(1),15.
47 Hermawan H, Dubé D, Mantovani D. Advanced Materials Research,2007,15-17,107.
48 Liu B, Zheng Y F. Acta Biomaterialia,2011,7(3),1407.
49 Schinhammer M, Gerber I, Hänzi A C, et al. Materials Science and Engineering C,2013,33(2),782.
50 Vojtech D, Kubasek J, Capek J, et al. Materiali in Tehnologije,2015,49(6),877.
51 Sing N B, Mostavan A, Hamzah E, et al. Journal of Biomedical Materials Research Part B: Applied Biomaterials,2015,103(3),572.
[1] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[2] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[3] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[4] 王海风, 王若轩, 董云谷, 刘鑫. 溶胶-凝胶法制备Eun+x∶SiO2薄膜及其性能研究[J]. 材料导报, 2019, 33(Z2): 165-168.
[5] 刘卓萌, 刘忠军, 姬帅, 雒设计. Ti5Si3的制备与应用研究进展[J]. 材料导报, 2019, 33(Z2): 175-180.
[6] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[7] 杨金龙, 董长城, 骆健. 新型功率模块封装中纳米银低温烧结技术的研究进展[J]. 材料导报, 2019, 33(Z2): 360-364.
[8] 蔡祥, 乔岩欣, 许道奎, 李传强, 杨兰兰, 周慧玲. 镁锂合金强化行为研究进展[J]. 材料导报, 2019, 33(Z2): 374-379.
[9] 吴懿萍, 何臻毅, 周志纲, 熊汉青, 贾寓真, 李承波, 李国锋. 非等温回归再时效对7050铝合金组织与力学性能的影响[J]. 材料导报, 2019, 33(Z2): 394-397.
[10] 陈爱华, 俞坚钢, 陈国平, 唐诤溱, 王鹏举. 合金化元素对铜基块状非晶合金性能影响的研究进展[J]. 材料导报, 2019, 33(Z2): 415-418.
[11] 杨林, 熊建坤, 余勇, 文仲波, 聂甫恒, 杨东, 王东力, 冯雨来. 大热输入对焊条电弧焊低合金钢力学性能的影响[J]. 材料导报, 2019, 33(Z2): 424-427.
[12] 张李锋, 段江. 750 kV变电站地刀连杆杆端轴承断裂失效分析[J]. 材料导报, 2019, 33(Z2): 452-454.
[13] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[14] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[15] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed