Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 273-277    
  无机非金属及其复合材料 |
偶联剂改性玄武岩纤维增强水泥基复合材料力学性能
王林1, 王梦尧1, 王佩勋2, 卢京宇1
1 北京建筑大学土木与交通工程学院,北京 100044;
2 中铁二局第四工程有限公司,成都 610031
Mechanic Properties of Cement Matrix Composites Reinforced with Basalt FiberModified with Silane Coupling Agent
WANG Lin1, WANG Mengyao1, WANG Peixun2, LU Jingyu1
1 College of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044;
2 China Railway ERJU 1st Engineering Co., Ltd, Chengdu 610031
下载:  全 文 ( PDF ) ( 1991KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为改善玄武岩纤维(BF)与水泥基材料的界面结合作用,分别采用质量分数为0.4%、0.8%和1.2%的γ-氨丙基三乙氧基硅烷(CG550)、γ-甲基丙烯酰氧丙基三甲氧基硅烷(CG570)和乙烯基三乙氧基硅烷(Z6518)的三种硅烷偶联剂对玄武岩纤维进行表面处理,研究改性后纤维及其增强混凝土的力学性能影响规律。实验结果表明,随着CG550溶液浓度增加,改性玄武岩纤维及其水泥基复合材料力学性能整体呈上升趋势,当CG550溶液浓度为1.2%时,纤维及其增强水泥基材料有最佳的力学性能;随着CG570溶液浓度增加,改性后玄武岩纤维的断裂强度先升高后降低,断裂伸长率基本不变,纤维断裂强度最高提升5.8%,其水泥基复合材料的力学性能随溶液浓度增加呈上升趋势,抗折强度最高提升24.4%,抗压强度最高提升7.3%;随着Z6518溶液浓度上升,改性后玄武岩纤维的断裂强度逐渐降低,但断裂伸长率逐渐增高,表现出较好的延性;其水泥基复合材料力学性能随浓度变化无明显改善。综合考虑实验结果,三种硅烷偶联剂对纤维的改性效果好坏依次为CG570、CG550、Z6518。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王林
王梦尧
王佩勋
卢京宇
关键词:  玄武岩纤维  水泥基复合材料  表面改性  硅烷偶联剂  力学性能    
Abstract: For improving the interface bonding effect of the basalt fiber (BF) to cement-based material, the BF was treated with different concentration (0.4%, 0.8% and 1.2%) of CG550,CG570,Z6518 respectively.The mechanical properties of the treated fiber and BF enhanced cement composites are studied. The experimental results show that with the increasing concentration of CG550 solution, the mechanical properties of treated fiber and BF/cement composite increase as a whole. The treated BF and BF/cement composites have the best mechanical properties,as the concentration of CG550 solution is 1.2%. With the increasing concentration of CG570 solution, the fracture strength of treated BF increases firstly and then decreases,and the fracture elongation remains basically unchanged. The fracture strength of BF raises by 5.8%. The mechanical properties of BF/cement composites increases with the increasing of solution concentration.The highest flexural strength raises by 24.4%, the highest compressive strength raises by 7.3%; with the increasing concentration of Z6518 solution, the fracture strength of treated BF decreases gradually, but the fracture elongation increases gradually, showing good ductility. The mechanical properties of BF/cement composites is not improved significantly with the change of concentration.Considering the experimental results, the modification effects of three silane coupling agents on the fibers were ranked as CG570, CG550 and Z6518.
Key words:  basalt fiber    cement matrix composite    surface modification    silane coupling agent    mechanic properties
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TU528  
基金资助: 北京市属高校基本科研业务费专项资金(X18265)
通讯作者:  wanglin@bucea.edu.cn   
作者简介:  王林,北京建筑大学副教授,在清华大学获得硕士学位,在北京中国矿业大学获得博士学位。现任教于北京建筑大学。以第一作者身份发表学术论文10余篇,申请发明专利3项。主持包括国家自然科学基金项目、北京市自然科学基金项目及建设部相关项目等,主要研究方向为水泥基材料。
引用本文:    
王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
WANG Lin, WANG Mengyao, WANG Peixun, LU Jingyu. Mechanic Properties of Cement Matrix Composites Reinforced with Basalt FiberModified with Silane Coupling Agent. Materials Reports, 2019, 33(Z2): 273-277.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/273
1 Johnson C D.Fibers reinforced cements and concretes,US:Gordon Breach Sci Publishers,2001.
2 Cong X H, Sun J, Zhao F, et al. Advanced Materials Research,2011,250-253,485.
3 Wu R H. Advanced Materials Research,2012,450-451,499.
4 Zhang X F, Liu Z J, Qian X M, et al. Advanced Materials Research,2011,332-334,2028.
5 Ma J X, Zhang M, Zhao G. Applied Mechanics and Materials,2012,253-255,533.
6 He W M, Chen S F, Wang C, et al. Advanced Materials Research,2013,1869,671.
7 贾明皓,肖学良,钱坤.硅酸盐通报,2018,37(11),100.
8 谢奥林,尹彩流,王秀飞,等.润滑与密封,2018,43(9),131.
9 王晓东,云斯宁,张太宏,等.材料导报:研究篇,2017,31(3),77.
10 Deák T, Czigány T, et al. Express Polymer Letters,2010,4,590.
11 钟智丽,刘华武.产业用纺织品,2008(2),33.
12 郭昌盛,杨建忠,等.高科技纤维与应用,2015,40(1),24.
13 Wang G J, Liu Y W, Guo Y J, et al. Surface and Coatings Technology,2007,201(15),6565.
14 宋秋霞,刘华武,钟智丽,等.天津工业大学学报,2010(1),19.
15 李伟.无碱玻璃纤维增强纺织型浸润剂的研制与应用研究.硕士学位论文,山东大学,2006.
[1] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[2] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[3] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[4] 王海风, 王若轩, 董云谷, 刘鑫. 溶胶-凝胶法制备Eun+x∶SiO2薄膜及其性能研究[J]. 材料导报, 2019, 33(Z2): 165-168.
[5] 刘玉玲, 张修庆. Fe-Mn合金在生物医学方面的应用及前景[J]. 材料导报, 2019, 33(Z2): 331-335.
[6] 肖忆楠, 乔岩欣, 李月明, 盛立远, 赖琛, 奚廷斐. 医用钛及钛合金表面改性技术的研究进展[J]. 材料导报, 2019, 33(Z2): 336-342.
[7] 杨金龙, 董长城, 骆健. 新型功率模块封装中纳米银低温烧结技术的研究进展[J]. 材料导报, 2019, 33(Z2): 360-364.
[8] 蔡祥, 乔岩欣, 许道奎, 李传强, 杨兰兰, 周慧玲. 镁锂合金强化行为研究进展[J]. 材料导报, 2019, 33(Z2): 374-379.
[9] 吴懿萍, 何臻毅, 周志纲, 熊汉青, 贾寓真, 李承波, 李国锋. 非等温回归再时效对7050铝合金组织与力学性能的影响[J]. 材料导报, 2019, 33(Z2): 394-397.
[10] 陈爱华, 俞坚钢, 陈国平, 唐诤溱, 王鹏举. 合金化元素对铜基块状非晶合金性能影响的研究进展[J]. 材料导报, 2019, 33(Z2): 415-418.
[11] 杨林, 熊建坤, 余勇, 文仲波, 聂甫恒, 杨东, 王东力, 冯雨来. 大热输入对焊条电弧焊低合金钢力学性能的影响[J]. 材料导报, 2019, 33(Z2): 424-427.
[12] 张李锋, 段江. 750 kV变电站地刀连杆杆端轴承断裂失效分析[J]. 材料导报, 2019, 33(Z2): 452-454.
[13] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[14] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[15] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed