Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 215-221    
  无机非金属及其复合材料 |
民机复合材料帽型长桁压缩承载力分析与试验
张绪, 冯瑞, 张晔, 郭卫, 刘富
上海飞机设计研究院,上海 201210
Compression Strength Analysis and Test of CFRP Hat-stringer on Civil Aircraft
ZHANG Xu, FENG Rui, ZHANG Ye, GUO Wei, LIU Fu
Shanghai Aircraft Design and Research Institute, Shanghai 201210
下载:  全 文 ( PDF ) ( 2883KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了验证民机复合材料帽型长桁压缩承载力分析方法的合理性,设计了某碳纤维复合材料单向带预浸料和织物预浸料混合铺层组成的帽型长桁结构试验件并对其进行了压缩承载力试验。试验结果表明,随着载荷的增加,长桁帽底蒙皮和帽腰、帽脚发生局部屈曲,进而使长桁发生压损破坏。分别利用工程计算方法和有限元分析方法计算长桁的初始屈曲载荷和压损强度。工程分析方法得到的计算结果小于试验结果,保守量分别为37.5%和27.6%;有限元分析得到的初始屈曲载荷和压损强度与试验结果均较接近,误差分别为1.4%和2.3%;对比分析表明,复合材料帽型长桁压缩承载力的工程分析方法较为保守,可保证结构设计的安全性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张绪
冯瑞
张晔
郭卫
刘富
关键词:  碳纤维复合材料  帽型长桁  局部屈曲  压损    
Abstract: In order to verify compression strength analysis method of CFRP hat-stringer on civil aircraft, a set of CFRP hat-stringer test articles layered from unidirectional tapes and fabric prepregs for compression tests were manufactured. As the compression load increased, local buckling appeared at the stringer bottom, wrest and foot skin with the load-strain curves diverging obviously. Then the compression load increased until the stringer crippled. Classical engineering analysis method and finite element modeling (FEM) method were both used to estimate the initial local buckling load and the crippling load. The loads computed via engineering analysis method were less than the test mean value with 37.5% and 27.6% deviation respectively. While the loads via FEM were close to the test mean value only with 1.4% and 2.3% deviation respectively. It was shown that, the engineering method for CFRP hat-stringer initial buckling and crippling loads calculation was more conservative to make sure that the structural design was safe enough.
Key words:  carbon fiber reinforced plastic (CFRP)    hat-stringer    local buckling    crippling
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  V258  
通讯作者:  345552710@qq.com   
作者简介:  张绪,2009年6月毕业于南京航空航天大学,获得工程力学专业硕士学位。自2009年7月起就职于上海飞机设计研究院强度设计研究部,目前主要从事复合材料飞机结构的强度分析与试验验证工作。
引用本文:    
张绪, 冯瑞, 张晔, 郭卫, 刘富. 民机复合材料帽型长桁压缩承载力分析与试验[J]. 材料导报, 2019, 33(Z2): 215-221.
ZHANG Xu, FENG Rui, ZHANG Ye, GUO Wei, LIU Fu. Compression Strength Analysis and Test of CFRP Hat-stringer on Civil Aircraft. Materials Reports, 2019, 33(Z2): 215-221.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/215
1 杜善义,关志东.复合材料学报,2008,25(1),1.
2 吴志恩.航空制造技术,2008(15),92.
3 吴志恩.航空制造技术,2013(13),32.
4 王绍凯,马绪强,李敏,等.玻璃钢/复合材料,2014(9),76.
5 周震,陈少军,黄文俊,等.高科技纤维与应用,2018(6),22.
6 顾轶卓,李敏,李艳霞,等.航空学报,2015,36(8),2773.
7 孙振起,吴安如.材料导报:综述篇,2015,29(6),61.
8 马立敏,张嘉振,岳广全,等.复合材料学报,2015,32(2),317.
9 杨乃宾.航空学报,2008,29(3),596.
10 范玉清,张丽华.航空学报,2009,30(3),534.
11 Vescovini R, Bisagni C. AIAA Journal,2012,50(4),904.
12 刘卫,何周理.民用飞机设计与研究,2018,129(2),85.
13 CMH-17协调委员会.复合材料手册.上海交通大学出版社,2014,pp.426.
14 中国航空研究院.复合材料结构稳定性分析指南.航空工业出版社,2002,pp.5.
15 解思适.飞机设计手册 第9册:载荷、强度和刚度.航空工业出版社,2001,pp.338.
16 ABAQUS INC. ABAQUS/CAE User’s Manual,2004,USA.
17 Maimi P, Camanho P P, Mayugo J A, et al. Mechanics of Materials,2007,39,909.
[1] 韩艳, 王龙龙, 刘志浩. CFRP板加固含I型裂纹混凝土的断裂扩展规律[J]. 材料导报, 2019, 33(Z2): 304-308.
[2] 李红, 刘旭升, 张宜生, JacekSenkara, 李光瀛, 马鸣图. 新能源电动汽车异种材料连接技术的挑战、趋势和进展[J]. 材料导报, 2019, 33(23): 3853-3861.
[3] 魏子易,安晓鹏,史才军,武斌,元强. 基于CFD模拟的新拌混凝土泵送压力损失预测[J]. 材料导报, 2019, 33(22): 3738-3743.
[4] 杨洁, 吴宁, 潘月秀, 朱世鹏, 焦亚男, 陈利. 环氧改性水性聚氨酯上浆剂对碳纤维/氰酸酯树脂复合材料界面性能的影响[J]. 材料导报, 2019, 33(10): 1762-1767.
[5] 崔海坡, 张梦雪, 张阿龙. 碳纤维复合材料假脚冲击后疲劳性能影响因素分析*[J]. 《材料导报》期刊社, 2017, 31(18): 150-154.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed