Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 210-214    
  无机非金属及其复合材料 |
胶粘剂冲击性能测试方法研究现状
游敏1, 李明波2, 袁有录1, 林高2, 余海洲1
1 三峡大学水电机械设备设计与维护湖北省重点实验室,宜昌 443002;
2 湖北力帝机床股份有限公司,宜昌 442001
Progress in Test Methods of Impact Properties of Adhesives
YOU Min1, LI Mingbo2, YUAN Youlu1, LIN Gao2, YU Haizhou1
1 Hubei Key Laboratory of Hydroelectric Machinery Design and Maintenance, China Three Gorges University, Yichang 443002;
2 Hubei Lidi Machine Tool Co., Ltd, Yichang 443001
下载:  全 文 ( PDF ) ( 1830KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由胶粘剂制备的胶接结构具有应力分布均匀、密封性好、成本低廉、适应性广(特别是可连接厚度相差悬殊的构件)等优点,在建筑、载运工程、电子工业等领域的应用日趋广泛。当胶接结构承受动载、瞬时冲击时,会产生不同于静载条件下的破坏。因而对胶粘剂及胶接接头的抗冲击能力进行评价非常重要,要不断研究和改善试验方法,以保证重要胶接结构在使用中的可靠性。
然而,由于影响胶接接头冲击性能的因素较多,尤其是高聚物胶层对高应变速率很敏感,冲击时间又较为短暂,冲击试验所测得的总能量中难以区分导致试样断裂的分量,研究工作进展相对缓慢。因此,近几年来除对两个冲击强度标准试验方法的修订及完善之外,研究者们还在应用非标方法来评定胶粘剂冲击性能等方面不断尝试,并取得了一定的进展。在标准冲击试验方法已取得的进展主要在“数据自动获取与处理技术”的应用方面。在非标冲击试验方法的应用方面,借鉴金属材料冲击性能的弯曲冲击评定方法的金属-胶层对接接头已具备一定的实用价值。
本文对胶粘剂冲击性能测试方法的研究进展做了评述,分析了国内胶粘剂冲击强度测定方法的不足及局限性,结合已取得的研究成果,对两种现行国标提出了改进建议。对非标测试法特别是三点弯曲和悬臂梁弯曲冲击试验法在胶粘剂冲击性能测定方面应用的可行性做了分析。展望了本研究领域的发展趋势,以期为更准确地评定胶粘剂的冲击性能,提高其应用可靠性提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
游敏
李明波
袁有录
林高
余海洲
关键词:  胶粘剂  剪切冲击  剥离冲击  弯曲冲击  测试方法    
Abstract: The applications domain of the structures produced with the adhesives have been become more and more wide in civil construction, transporting, electricity industry for its advantages of mean in stress distribution, good in sealing performance, lower in cost and greater versatility. The adhesive bonded structure may be failed in different type from the one under static load when it was subjected to the dynamic or impact load. It is important to investigate and improve the test methods continuously so that the impact property of the adhesives and the adhesive joints could be evaluated accurately to ensure the structure good in reliability.
Since the influencing factors of the impact property are much more and the polymers are sensitive to the strain rate they undergo, different phenomena can be induced when a load is applied abruptly on the bonded structure. It is difficult to distinguish the component energy needed for the crack propagation in the adhesive layer from the total absorbed energy in the testing and the progress in this domain is relatively slow. In the past years, impressive strides have been made in promoting the revision and improvement to the standards published for determination the impact strength of the adhesives. And some advances have been achieved in the investigation of non-standard test methods for determination of the impact property of the adhesives. The main progress achieved in the standard test methods is “instrumented impact test” which implied the test data (such as force, velocity of the impactor) were recorded automatically and the deflection of the specimen might be calculated out so that the curves of force-deflection or force-time could be drawn out after the testing.And some advances have been obtained in the investigation of non-standard test methods using the specimen of the metal-adhesive butt joint and the method may be used widely in the future.
The researches that have been previously undertaken in the fields of block impact test methods for measuring the impact property of the adhesively bonded joints were reviewed in this document. The shortages or limitations of the standard test methods for determination the impact property of the adhesives are discussed. Based on the analysis of the test standard and the research results achieved, the recommendations to improve the two domestic standards for determination the impact property of the adhesives are proposed. The tentative application of both the three point bending (Charpy) and the cantilever bending (Izod) test using the metal adhesive butt joint in determining the impact property of the adhesive is also discussed.
Key words:  adhesive    impact shear    impact wedge peel    bend impact    test method
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TG495  
基金资助: 国家自然科学基金(50975160);湖北省自然科学基金重点项目(2014CFA123)
通讯作者:  youmin@ctgu.edu.cn   
作者简介:  游敏,三峡大学教授,博士研究生导师。国务院政府特殊津贴获得者,湖北省有突出贡献的中青年专家称号获得者,入选湖北省普通高校跨世纪学科带头人、湖北省新世纪高层次人才。2009年至2014年任水电机械设备设计与维护湖北省重点实验室主任。长期从事连接结构力学行为等相关领域的研究,并取得了创新性的研究成果,在SCI、EI收录的学术刊物上发表研究论文100余篇,出版了《连接结构分析》《胶接强度分析及应用》等学术专著3部。获省部级自然科学奖、技术发明奖和科技进步奖5项。
引用本文:    
游敏, 李明波, 袁有录, 林高, 余海洲. 胶粘剂冲击性能测试方法研究现状[J]. 材料导报, 2019, 33(Z2): 210-214.
YOU Min, LI Mingbo, YUAN Youlu, LIN Gao, YU Haizhou. Progress in Test Methods of Impact Properties of Adhesives. Materials Reports, 2019, 33(Z2): 210-214.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/210
1 Adams R D (Ed). Adhesive bonding-science, technology and application, Woodhead Publishing Ltd, Cambridge England,2005.
2 游敏,郑小玲.胶接强度分析及应用,华中科技大学出版社,2009.
3 da Silva L F M, Öchsner A, Adams R D (Eds). Handbook of adhesion technology second edition, Springer Science & Business Media, Germany,2018.
4 Jia Z, Yuan G, Ma H L, et al. Composites Part B: Engineering,2016,87,2272.
5 权国政,武东森,李贵胜.材料导报:研究篇,2013,27(9),67
6 Vales B, Marguet S, Creachcadec R. et al, International Journal of Adhesion and Adhesives,2019,90,106
7 赵金华,曹海琳,晏义伍.等,材料工程,2018,46(1),92.
8 Adams R D, Harris J A. International Journal of Adhesion and Adhesives,1996,16,61.
9 Machado J J M, Marques E A S, da Silva L F M. Journal of Adhesion,2018,94,421.
10 Xu S, Dillard D A. IEEE Transactions on Components & Packaging Technologies,2003,26,554.
11 Goglio L, Rossetto M. International Journal of Impact Engineering,2008,35,635.
12 Beevers A, Ellis M D. International Journal of Adhesion and Adhesives,1984,4,13.
13 Galliot C, Rousseau J, Verchery G. International Journal of Adhesion and Adhesives,2012,35,68
14 Asgharifar M, Kong F, Carlson B, et al. International Journal of Adhesion and Adhesives,2014,50,17.
15 Rao Y, Lu D, Wong C P. International Journal of Adhesion and Adhesives,2004,24(5),449.
16 GB/T 6328-1999胶粘剂剪切冲击强度试验方法,中国标准出版社,2000.
17 ASTM D950-03(2011) Standard Test Method for Impact Strength of Adhesive Bonds,ASTM International, West Conshohocken, PA,2011.
18 ISO 9653:1998 Adhesives —Test method for shear impact strength of adhesive bonds,1998.
19 GB/T 36877-2018结构胶粘剂冲击剥离强度的测定楔形物法,中国标准出版社,2018.
20 ISO 11343:2003 Adhesives. Determination of dynamic resistance to clea-vage of high-strength adhesive bonds under impact conditions, wedge impact method,2003.
21 Kuhn H, Medlin D. ASM Handbook Vol. 8: Mechanical Testing and Eva-luation, ASM International, Materials Park,2000.
22 何爱萍,游敏,刘文俊,等,弹性体,2009,19(1),10.
23 Xu S, Dillard D A, Dillard J G. International Journal of Adhesion and Adhesives,2003,23,235.
24 Vaidya U K, Gautam A R S, Hosur M, et al. International Journal of Adhesion and Adhesives,2006,26,184.
25 Challita G, Othman R. International Journal of Adhesion and Adhesives,2010,30,236.
26 Bezemer A A, Guyt C B, Vlot A. International Journal of Adhesion and Adhesives,1998,18,255.
27 ISO 9653:1991 Adhesives —Test method for shear impact strength of adhesive bonds,1991.
28 GB/T 6328-1986胶粘剂剪切冲击强度试验方法,中国标准出版社,1986.
29 Taylor A C, Blackman B R K, Kinloch A J, et al. In:Proceedings of International Conference on Structural Adhesives in Engineering (SAE-IV), Bristol,1995.
30 Aga Z A, Woldesenbet E. Journal of Adhesion Science and Technology,2007,21(1),21.
31 You M, Hu J R, Zheng X L, et al. Advanced Materials Research,2011,230-232,1350
32 You M, Zheng Y, Zheng X L, et al. International Journal of Adhesion and Adhesives,2003,23(5),427.
33 游敏,朱定锋,郑小玲,等.材料导报:研究篇,2009,23(11),100.
34 Blackman B R K, Kinloch A J, Taylor A C, et al. Journal of Materials Science,2000,35,1867.
35 Back J H, Baek D, Shin J H, et al. Polymer,2019,11,152.
36 Yue Z, Yuan X, Gao C, et al. Lecture Notes Electrical Engineering,2013,195,889.
37 Bandekar J, Golden M R, Meyers G, et al. SAE Technical Papers,DOI:10.4271/2010-01-0434
38 ASTM E23-18, Standard test methods for notched bar impact testing of metallic materials, ASTM International, West Conshohocken, PA,2018.
39 Muhammad said N B, Ali M B, Zakaria K A, et al. MATEC Web of Conferences,2016,78,01054.
40 Toth L, Rossmanith H P, Siewert T A. From Charpy to Present Impact Testing, Francois D and Pineau A (Eds.) Elsevier Science ltd.,2002.
41 Wood H F, SAE Technical Paper,1919.
42 Charpy A G A. ASTM Special Technical Publication,2000,1380,46.
43 GB/T229-2007金属材料 夏比摆锤冲击试验方法,中国标准出版社,2007.
44 ISO 148-1:2006 Metal materials-Charpy pendulum impact test method-Part 1:Test method:MOD.
45 GBT 19748-2005钢材夏比V型缺口摆锤冲击试验 仪器化试验方法,中国标准出版社,2005.
46 ISO 14556:2000 Steel — Charpy V-notch pendulum impact test—Instrumented test method,2000.
47 张建斌,刘帆,薛飞.材料导报:研究篇,2018,32(4),1318.
48 GB/T 1043.1-2008 塑料 简支梁冲击性能的测定 第1部分:非仪器化冲击试验,中国标准出版社,2008.
49 GB T 1043.2-2018 塑料 简支梁冲击性能的测定 第2部分:仪器化冲击试验,中国标准出版社,2018.
50 ISO 179-1-2010 Plastics—Determination of Charpy impact properties—Part1: Non-instrumented impact test,2010.
51 ISO 179-2-1997 Plastics—Determination of Charpy impact properties—Part2: Instrumented impact test,1997.
52 GB/T1843-2008 塑料 悬臂梁冲击强度的测定,中国标准出版社,2007.
53 ISO 180-2000 Plastics—Determination of Izod impact strength,2000.
54 http://www.wance.com.cn/news/company/65d3bf8a-18ff-4533-9768-b1808a5f6f6a.html.
55 You M, Li M, Li J L, et al. Applied Mechanics and Materials,2014,488,538.
56 You M, Wu L, Yu H Z, et al. Advanced Materials Research,2013,602,2096.
57 Goglio L.Handbook of adhesion technology second edition, Springer Science & Business Media, Germany,2018.
[1] 周鹏, 赵华, 陶海征, 祖成奎, 刘永华, 石凯文, 张瑞. 硫系玻璃熔体的黏度测试方法和黏温方程[J]. 材料导报, 2019, 33(Z2): 181-188.
[2] 王朝辉, 韩晓霞, 陈姣, 侯荣国, 郑少鹏. 浇注式导电沥青混凝土传导热效果[J]. 材料导报, 2018, 32(22): 3891-3899.
[3] 王志远, 邢志国, 王海斗, 李国禄, 刘珂璟, 邢壮. 重载齿轮弯曲疲劳寿命测试方法研究现状[J]. 材料导报, 2018, 32(17): 3051-3059.
[4] 史才军, 张留洋, 张健, 李宁, 欧志华. 碱激发材料氯离子传输性能测试方法及影响因素研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 95-100.
[5] 张欢, 许文, 邹士文, 张新兰. 环氧胶粘剂及其胶接界面热氧老化机理研究[J]. 《材料导报》期刊社, 2017, 31(12): 104-108.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed