Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 65-71    https://doi.org/10.11896/j.issn.1005-023X.2017.016.014
  材料研究 |
低压烧结温度对一步法制备超细晶WC-Co基硬质合金组织及性能的影响
鲍贤勇1,2, 张峰2, 鲁忠臣3, 曾美琴1, 朱敏1
1 华南理工大学材料科学与工程学院, 广州 510640;
2 飞亚达(集团)股份有限公司, 深圳 518057;
3 华南理工大学机械与汽车工程学院,广州 510640
Effect of Low Pressure Sintering Temperature on Microstructure and Mechanical Performance of Ultrafine WC-Co Based Hard Metals Prepared by One-step Method
BAO Xianyong1,2, ZHANG Feng2, LU Zhongchen3, ZENG Meiqin1, ZHU Min1
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640;
2 Fiyta Holdings LTD, Shenzhen 518057;
3 School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640
下载:  全 文 ( PDF ) ( 2533KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用等离子球磨技术制得W-C-10Co-0.9VC-0.3Cr3C2纳米复合粉体,并利用单向模压成型法将其压制成生坯,再经低压烧结一步法制备成硬质合金。研究表明,等离子球磨3 h所获得的复合粉体呈片层状形貌,并且成分分布均匀。在1 380 ℃及1 400 ℃烧结时,由于等离子球磨的特殊作用,VC、Cr3C2对WC晶粒长大抑制作用突显。1 380 ℃烧结制备的硬质合金,致密度为99.2%,WC平均晶粒尺寸为250 nm,硬度和横向断裂强度分别为92.3HRA和2 443 MPa,具有最佳的WC晶粒尺寸与致密度配合,以及最佳的综合力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲍贤勇
张峰
鲁忠臣
曾美琴
朱敏
关键词:  等离子球磨  碳化烧结一步法  低压烧结  烧结温度  力学性能    
Abstract: W-C-10Co-0.9VC-0.3Cr3C2 nano composite powders were prepared by plasma milling (P-milling), and subsequently compressed into green compacts with a uniaxial pressure, then the green compacts were carbonized and sintered in a one-step me-thod by low pressure sintering technology. The analysis results indicate that the homogeneous and lamellar structure composite powder is achieved by P-milling for 3 h. Due to the special effect of P-milling, VC and Cr3C2 begin to play a role of inhibition to WC grain size at the temperature of 1 380 ℃ and 1 400 ℃. Among them, the hard metals that sintered at 1 380 ℃ exhibit the optimum combination of WC grain size and relative density, and the best mechanical performance simultaneously. The density of hard metal is 99.2% with 250 nm of mean WC grain size, and the hardness and transverse rupture strength reach up to 92.3HRA and 2 443 MPa, respectively.
Key words:  plasma milling    carbonizing and sintering by one-step    low pressure sintering    sintering temperature    mechanical performance
               出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TF125  
作者简介:  鲍贤勇:男,1974年生,博士研究生,研究方向为高性能硬质合金及金属陶瓷等 E-mail:baoxy@fiyta.com.cn 朱敏:男,1962年生,教授,博士研究生导师,研究方向为高性能纳米金属材料等 E-mail:memzhu@scut.edu.cn
引用本文:    
鲍贤勇, 张峰, 鲁忠臣, 曾美琴, 朱敏. 低压烧结温度对一步法制备超细晶WC-Co基硬质合金组织及性能的影响[J]. 《材料导报》期刊社, 2017, 31(16): 65-71.
BAO Xianyong, ZHANG Feng, LU Zhongchen, ZENG Meiqin, ZHU Min. Effect of Low Pressure Sintering Temperature on Microstructure and Mechanical Performance of Ultrafine WC-Co Based Hard Metals Prepared by One-step Method. Materials Reports, 2017, 31(16): 65-71.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.014  或          http://www.mater-rep.com/CN/Y2017/V31/I16/65
1 Fang Z Z, Wang X, Ryu T, et al. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide-A review[J]. Int J Refract Met Hard Mater,2009,27(2):288.
2 Wang X, Fang Z Z, Sohn H Y. Grain growth during the early stage of sintering of nanosized WC-Co powder[J]. Int J Refract Met Hard Mater,2008,26(3):232.
3 Wang H, Zeng M Q, Liu J W, et al. One-step synthesis of ultrafine WC-10Co hardmetals with VC/V2O5 addition by plasma assisted milling[J]. Int J Refract Met Hard Mater,2015,48:97.
4 Bonache V, Salvador M D, Fernández A, et al. Fabrication of full density near-nanostructured cemented carbides by combination of VC/Cr3C2 addition and consolidation by SPS and HIP technologies[J]. Int J Refract Met Hard Mater,2011,29(2):202.
5 Ren X Y, Peng Z J, Wang C B, et al. Effect of ZrC nano-powder addition on the microstructure and mechanical properties of binderless tungsten carbide fabricated by spark plasma sintering[J]. Int J Refract Met Hard Mater,2015,48:398.
6 Xiao D H, He Y H, Song M, et al. Y2O3-and NbC-doped ultrafine WC-10Co alloys by low pressure sintering[J]. Int J Refract Met Hard Mater,2010,28(3):407.
7 Mahmoodan M, Aliakbarzadeh H, Gholamipour R. Microstructural and mechanical characterization of high energy ball milled and sintered WC-10wt%Co-xTaC nano powders[J]. Int J Refract Met Hard Mater,2009,27(4):801.
8 Morton C W, Wills D J, Stjernberg K. The temperature ranges for maximum effectiveness of grain growth inhibitors in WC-Co alloys[J]. Int J Refract Met Hard Mater,2005,23(4-6):287.
9 Poetschke J, Richter V, Holke R. Influence and effectivity of VC and Cr3C2 grain growth inhibitors on sintering of binderless tungsten carbide[J]. Int J Refract Met Hard Mater,2012,31:218
10 朱敏, 戴乐阳, 曹彪, 等. 一种等离子体辅助高能球磨方法: 中国,200510036231.9[P].2006.
11 Zhu M, Lu Z C, Hu R Z, et al. Dielectric barrier discharge plasma assisted ball milling technology and its apllication in materials fabrication[J]. Acta Metall Sinica,2016(10):1239(in Chinese).
朱敏, 鲁忠臣, 胡仁宗, 等. 介质阻挡放电等离子体辅助球磨及其在材料制备中的应用[J]. 金属学报,2016(10):1239.
12 Yang X P. Improving the plasma-assisted ball mill and optimizing the fabrication process of nano-composite WC-10Co powder[D]. Guangzhou: South China University of Technology,2010(in Chinese).
杨小平. 等离子体辅助球磨设备改进及纳米WC-10Co粉体制备工艺优化[D]. 广州:华南理工大学,2010.
13 朱敏, 靳磊, 顾南山, 等. 一种WC-Co硬质合金的制备方法: 中国,200810028403.1[P].2008-05-30.
14 Ding Y. Microstructure control and properties of WC-Co based ultrafine hardmetals prepared by one-step method[D]. Guangzhou: South China University of Technology,2013(in Chinese).
丁勇. 一步法制备超细WC-Co基硬质合金的组织控制及性能[D]. 广州:华南理工大学,2013.
15 Zhu M, Bao X Y, Yang X P, et al. A novel method for direct synthesis of WC-Co nanocomposite powder[J]. Metall Mater Trans A,2011,42(9):2930.
16 Zhu M, Dai L Y, Gu N S, et al. Synergism of mechanical milling and dielectric barrier discharge plasma on the fabrication of nano-powders of pure metals and tungsten carbide[J]. J Alloys Compd,2009,478(1-2):624.
17 Upadhyaya G S, Bhaumik S K. Sintering of submicron WC-10wt.%Co hard metals containing nickel and iron[J]. Mater Sci Eng A,1988,105:249.
18 Wei C B, Song X Y, Zhao S X, et al. Synthesis of WC-Co composite powder by reduction and carbonization reactions and its densification[J]. Mater Sci Eng Powder Metall,2010(2):145(in Chinese).
魏崇斌, 宋晓艳, 赵世贤, 等. 超细WC-Co复合粉的原位反应合成及烧结致密化[J]. 粉末冶金材料科学与工程,2010(2):145.
19 Liu W B, Song X Y, Zhang J X, et al. A novel route to prepare ultrafine-grained WC-Co cemented carbides[J]. J Alloys Compd,2008,458(1-2):366.
20 Shi Z H. Fabrication of WC-Co hardmetal added with grain growth inhibitor by carbonizing and sintering in one step[D]. Guangzhou: South China University of Technology,2011(in Chinese).
施振华. 含晶粒长抑制剂的WC-Co硬质合金直接法制备[D]. 广州:华南理工大学,2011.
21 Jia K, Fischer T E, Gallois B. Microstructure, hardness and toughness of nanostructured and conventional WC-Co composites [J]. Nanostruct Mater,1998,10(5):875.
22 Mukhopadhyay A, Basu B. Recent developments on WC-based bulk composites [J]. J Mater Sci,2010,46(3):571.
23 Zhao S X, Song X Y, Liu X M, et al. Quantitative relationships between micro-struture parameters and mechanical properties of ultrafine cemeted carbides[J]. Acta Metall Sinca,2011(9):1188(in Chinese).
赵世贤, 宋晓艳, 刘雪梅, 等. 超细晶硬质合金显微组织参数与力学性能定量关系的研究[J]. 金属学报,2011(9):1188.
24 Song X Y, Zhao S X, Liu X M, et al. Stereological chracterizations of microstructure and frature path in ultrafine hard alloys[J]. Chinise J Stereology Image Analysis,2011(2):131(in Chinese).
宋晓艳, 赵世贤, 刘雪梅, 等. 超细晶硬质合金显微组织与断裂路径的体视学表征研究[J]. 中国体视学与图像分析,2011(2):131.
25 Zhang F. The preparation of WC-8Co hardmetal by one-step method and its cutting performance[D]. Guangzhou: South China University of Technology,2015(in Chinese).
张峰. WC-8Co硬质合金的一步法制备及切削性能[D]. 广州:华南理工大学,2015.
26 Wei C B, Song X Y, Fu J, et al. Microstructure and properties of ultrafine cemented carbides-Differences in spark plasma sintering and sinter-HIP[J]. Mater Sci Eng A,2012,552:427.
27 Li X F, Liu Y, Wei W, et al. Influence of NbC and VC on microstructures and mechanical properties of WC-Co functionally graded cemented carbides[J]. Mater Des,2016,90:562.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[15] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed