Please wait a minute...
材料导报  2018, Vol. 32 Issue (22): 4011-4015    https://doi.org/10.11896/j.issn.1005-023X.2018.22.030
  中国材料大会——生态环境材料 |
不同梳状键接结构聚羧酸在高性能混凝土中的应用性能和作用机理
刘晓1, 许谦1, 赖光洪1, 管佳男1, 夏春蕾2, 王子明1, 崔素萍1
1 北京工业大学材料科学与工程学院,北京 100124;
2 北京市市政工程研究院, 北京 100037
Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete
LIU Xiao1, XU Qian1, LAI Guanghong1, GUAN Jianan1, XIA Chunlei2, WANG Ziming1, CUI Suping1
1 College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124;
2 Beijing Municipal Engineering Research Institute, Beijing 100037
下载:  全 文 ( PDF ) ( 2242KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 梳状结构聚羧酸具有优异的分子结构可设计性,为绿色混凝土的生态化、高性能化提供了理论基础和技术支撑。本研究以聚丙烯酸(PAA)、羟基甲氧基聚氧乙烯丙烯醚(HMPEPG)、氨基甲氧基聚氧乙烯丙烯醚(AMPEPG)为反应原料,根据酯化和酰胺化反应,分别设计合成了以酯基和酰胺键接主侧链的梳状结构聚羧酸(PCE),并通过红外光谱(IR)和分子量测试证明了分子结构符合预期设计。水泥净浆和混凝土应用性能结果表明,酯基键接聚羧酸的初始净浆流动度和混凝土早期强度更优,酰胺键接聚羧酸的净浆流动度保持能力和混凝土扩展度更优。二者的作用机理存在显著差异,酯基键接聚羧酸的吸附行为更稳定,更易快速成核水化,酰胺键接聚羧酸的表面张力更低,气-液界面取向能力更强。本研究合成的酯键和酰胺键两种方式连接主侧链的梳状结构聚羧酸可分别应用于高早强要求和高泵送要求的混凝土,具有较好的应用前景和推广价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘晓
许谦
赖光洪
管佳男
夏春蕾
王子明
崔素萍
关键词:  聚羧酸  梳状结构  键接  分子设计    
Abstract: The comb-type polycarboxylic acid has excellent architecture designability, providing the theoretical basis and technical support for the ecologicalization and high performance of green concrete. In this study, polyacrylic acid (PAA), hydroxymethoxy polyoxyethylene propylene glycol (HMPEPG) and amino methoxy polyoxyethylene propylene glycol (AMPEPG) were used as reactants based on the esterification and amidation reactions, and the two comb-type polycarboxylic acids (PCEs) which backbone and side chain were connected by ester bond and amide bond were synthesized, respectively. The measurements of Infrared spectroscopy (IR) and molecular weight proved the expected molecular structures. The application results showed that the PCE with ester linkage exhibited better initial fluidity of cement paste and early strength of concrete, and moreover, the PCE with amide linkage exhibited better fluidity retention of cement paste and slump flow of concrete. With respect to their different mechanism, the PCE with ester linkage behaved more stable adsorption behavior and stronger acceleration to hydration, whereas the PCE with amide linkage behaved lower surface tension and stronger ability in gas-liquid interface orientation. These two PCEs can be applied to the concretes with high early strength and high pumping requirements respectively, presenting a good promotion value and application prospect.
Key words:  polycarboxylic acid    comb structure    linkage    molecular design
               出版日期:  2018-11-25      发布日期:  2018-12-21
ZTFLH:  TU528  
基金资助: 国家自然科学基金面上项目(51578025);北京市属高校高水平教师队伍建设支持计划青年拔尖人才培育计划项目(CIT&TCD201804008)
作者简介:  刘晓:男,1983年生,博士,副教授,博士研究生导师,主要从事生态环境聚合物的分子结构设计合成、高性能混凝土化学外加剂界面吸附化学等研究 E-mail:liux@bjut.edu.cn
引用本文:    
刘晓, 许谦, 赖光洪, 管佳男, 夏春蕾, 王子明, 崔素萍. 不同梳状键接结构聚羧酸在高性能混凝土中的应用性能和作用机理[J]. 材料导报, 2018, 32(22): 4011-4015.
LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete. Materials Reports, 2018, 32(22): 4011-4015.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.22.030  或          http://www.mater-rep.com/CN/Y2018/V32/I22/4011
1 Jiang B, Zhou S, Ji H, et al. Dispersion and rheological properties of ceramic suspensions using linear polyacrylate copolymers with carboxylic groups as superplasticizer[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects,2012,396(7):310.
2 Ouyang X, Qiu X, Chen P, et al. Physicochemical characterization of calcium lignosulfonate—A potentially useful water reducer[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects,2006,282:489.
3 Yamada K, Takahashi T, Hanehara S, et al. Effects of chemical structure on the properties of polycarboxylate-type superplasticizer[J]. Cement & Concrete Research,2000,30(2):197.
4 Sakai E, Yamada K, Ohta A, et al. Molecular structure and dispersion-adsorption mechanisms of comb-type superplasticizers used in Japan[J]. Journal of Advanced Concrete Technology,2003,1(3):16.
5 Guo W, Sun N, Qin J, et al. Synthesis and properties of an amphoteric polycarboxylic acid-based superplasticizer used in sulfoaluminate cement[J]. Journal of Applied Polymer Science,2012,125(1):283.
6 Habbaba A, Plank J. Surface chemistry of ground granulated blast furnace slag in cement pore Solution and its impact on the effectiveness of polycarboxylate superplasticizers[J]. Journal of the American Ceramic Society,2012,95(2):768.
7 Zhang T, Shang S, Yin F, et al. Adsorptive behavior of surfactants on surface of Portland cement[J]. Cement & Concrete Research,2001,31(7):1009.
8 Petri D F S. Xanthan gum: A versatile biopolymer for biomedical and technological applications[J]. Journal of Applied Polymer Science,2015,132(23):42035.
9 Plank J, Dai Z, Keller H, et al. Fundamental mechanisms for polycarboxylate intercalation into CA hydrate phases and the role of sulfate present in cement[J]. Cement & Concrete Research,2010,40(1):45.
10 Lu S, Liu G, Ma Y, et al. Synthesis and application of a new vinyl copolymer superplasticizer[J]. Journal of Applied Polymer Science,2010,117(1):273.
[1] 刘从振, 范英儒, 王磊, 黄永波, 钱觉时. 聚羧酸减水剂对硫铝酸盐水泥水化及硬化的影响[J]. 材料导报, 2019, 33(4): 625-629.
[2] 沙胜男, 史才军, 向顺成, 焦登武. 聚羧酸减水剂的合成技术研究进展[J]. 材料导报, 2019, 33(3): 558-568.
[3] 都蓉蓉, 张雄, 顾明东, 季涛. 聚羧酸减水剂与增强组分的复合效应及原理[J]. 材料导报, 2019, 33(14): 2461-2466.
[4] 何廷树, 杨仁和, 徐一伦, 李同新, 房佳斌. 掺加改性淀粉制备聚羧酸减水剂及其应用[J]. 《材料导报》期刊社, 2018, 32(4): 646-649.
[5] 唐晓博, 孙振平, 刘毅. 三乙醇胺助磨剂对水泥与聚羧酸系减水剂适应性的影响及其机理[J]. 《材料导报》期刊社, 2018, 32(4): 641-645.
[6] 唐芮枫, 王子明, 何欢, 张琳, 蔡扬扬, 王杰. 聚羧酸系减水剂复配β-环糊精对高贝利特硫铝酸盐水泥性能的影响[J]. 材料导报, 2018, 32(22): 4000-4005.
[7] 刘晓, 赖光洪, 许谦, 管佳男, 王子明, 崔素萍, 兰明章. 基于抑制粘土负作用效果的聚羧酸减水剂的设计合成及机理[J]. 材料导报, 2018, 32(22): 3880-3884.
[8] 白静静, 李海艳, 史才军, 管学茂, 向顺成. 硫铝酸盐水泥用抗泥型聚羧酸减水剂的制备及性能[J]. 《材料导报》期刊社, 2018, 32(14): 2384-2389.
[9] 李志坤, 彭家惠, 杨再富. 矿物掺合料对聚羧酸减水剂与水泥相容性的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 115-120.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed