Please wait a minute...
材料导报  2018, Vol. 32 Issue (20): 3562-3565    https://doi.org/10.11896/j.issn.1005-023X.2018.20.012
  金属与金属基复合材料 |
热挤压Mg-3Sn-1Zn-xCu合金的显微组织与力学性能
程鹏1, 陈云贵2, 丁武成2, 王春明2
1 四川大学空天科学与工程学院,成都 610065;
2 四川大学材料科学与工程学院,成都 610065;
Microstructure and Mechanical Properties of Hot-extruded Mg-3Sn-1Zn-xCu Alloys
CHENG Peng1, CHEN Yungui2, DING Wucheng2, WANG Chunming2
1 School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065;
2 College of Materials Science and Engineering, Sichuan University, Chengdu 610065;
下载:  全 文 ( PDF ) ( 1581KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了添加Cu对热挤压Mg-3Sn-1Zn合金显微组织和力学性能的影响。结果表明:添加少量Cu能显著细化热挤压Mg-3Sn-1Zn合金晶粒,同时在合金中形成具有高热稳定性的CuMgZn相,提高了合金的室温及高温强度和塑性。当Cu含量为0.5%时,热挤压Mg-3Sn-1Zn-0.5Cu合金的晶粒最细,为2.8 μm;其强度和塑性最高,室温屈服强度为241 MPa,伸长率为20.3%,150 ℃时屈服强度为128 MPa,室温拉伸力学性能优于挤压态AZ31B合金,高温强度优于铸态AE42合金。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程鹏
陈云贵
丁武成
王春明
关键词:    Mg-3Sn-1Zn合金  热挤压  显微组织  力学性能    
Abstract: Effects of Cu on microstructure and mechanical properties of hot-extruded Mg-3Sn-1Zn alloy were investigated. The results showed that the grain size of the hot-extruded Mg-3Sn-1Zn alloy was remarkably refined with a small amount of Cu, and the thermostable CuMgZn phase was formed in the alloys. Therefore, the strength and plasticity of the hot-extruded Mg-3Sn-1Zn-xCu alloys improved. The grain of the hot-extruded Mg-3Sn-1Zn-0.5Cu alloy was the finest with a size of 2.8 μm. The tensile yield strength and elongation of the hot-extruded Mg-3Sn-1Zn-0.5Cu alloy at room temperature were 241 MPa and 20.3%, respectively, which were superior to that of the hot-extruded AZ31B alloy. In addition, the tensile yield strength of the Mg-3Sn-1Zn-0.5Cu alloy at 150 ℃ was 128 MPa, which was better than that of as-cast AE42 alloy.
Key words:  Cu    Mg-3Sn-1Zn alloy    hot-extrusion    microstructure    mechanical properties
               出版日期:  2018-10-25      发布日期:  2018-11-22
ZTFLH:  TG146.2+2  
作者简介:  程鹏:男,1991年生,硕士研究生,研究方向为高强镁合金 E-mail:1316907554@qq.com 陈云贵:通信作者,男,1960年生,博士,教授,博士研究生导师,研究方向为轻质金属结构材料 E-mail:ygchen60@aliyun.com
引用本文:    
程鹏, 陈云贵, 丁武成, 王春明. 热挤压Mg-3Sn-1Zn-xCu合金的显微组织与力学性能[J]. 材料导报, 2018, 32(20): 3562-3565.
CHENG Peng, CHEN Yungui, DING Wucheng, WANG Chunming. Microstructure and Mechanical Properties of Hot-extruded Mg-3Sn-1Zn-xCu Alloys. Materials Reports, 2018, 32(20): 3562-3565.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.20.012  或          http://www.mater-rep.com/CN/Y2018/V32/I20/3562
1 Pan F, Zeng B, Jiang B, et al. Enhanced mechanical properties of AZ31B magnesium alloy thin sheets processed by on-line heating rolling[J]. Journal of Alloys and Compounds,2017,693:414.
2 Ding W J,Wu Y J,Peng L M,et al. Research and application deve-lopment of advanced magnesium alloys[J]. Materials China,2010,29(8):36(in Chinese).
丁文江,吴玉娟,彭立明,等.高性能镁合金研究及应用的新进展[J].中国材料进展,2010,29(8):36.
3 Yan Y Q,Zhang T J,Deng J,et al. Research and development of heat resistant mg alloys[J]. Rare Metal Materials and Engineering,2004,33(6):561(in Chinese).
闫蕴琪,张廷杰,邓炬,等.耐热镁合金的研究现状与发展方向[J].稀有金属材料与工程,2004,33(6):561.
4 Liu H M,Chen Y G,Tang Y Q,et al. The microstructure,tensile properties,and creep behavior of as-cast Mg-(1-10)% Sn alloys[J]. Journal of Alloys and Compounds,2007, 440(1):122.
5 Kang D H,Park S S,Kim N J. Development of creep resistant die cast Mg-Sn-Al-Si alloy[J]. Materials Science and Engineering:A,2005,413-414:559.
6 Sun Y S,Weng K Z,Yuan G Y. Effects of Sn addition on microstructure and mechanical properties of magnesium alloys[J]. The Chinese Journal of Nonferrous Metals,1999,9(1):55(in Chinese).
孙扬善,翁坤忠,袁广银. Sn 对镁台金显微组织和力学性能的影响[J]. 中国有色金属学报,1999, 9(1):55.
7 Sasaki T T,Ju J D,Hono K,et al. Heat-treatable Mg-Sn-Zn wrought alloy[J]. Scripta Materialia,2009,61(1):80.
8 Buha J. Mechanical properties of naturally aged Mg-Zn-Cu-Mn alloy[J]. Materials Science and Engineering: A,2008,489(1):127.
9 Liu X B,Shan D Y,Song Y W, et al. Influences of the quantity of Mg2Sn phase on the corrosion behavior of Mg-7Sn magnesium alloy[J]. Electrochimica Acta,2011,56(5):2582.
10 Zhu H M,Sha G,Liu J W, et al. Microstructure and mechanical properties of Mg-6Zn-xCu-0.6 Zr (wt.%) alloys[J]. Journal of Alloys and Compounds,2011, 509(8):3526.
11 Tang Y Q,Chen Y G,Xiao S F, et al. Microstructure, mechanical properties and compressive creep behavior of as-cast Mg-5Sn-(0—2)Cu alloys[J]. Rare Metal Materials and Engineering,2014,43(6):1291.
12 Hou L,Li Z,Zhao H,et al. Microstructure,mechanical properties, corrosion behavior and biocompatibility of as-extruded biodegradable Mg-3Sn-1Zn-0.5 Mn alloy[J]. Journal of Materials Science & Technology,2016,32(9):874.
13 Kim S H,Jung J G,You B S,et al. Effect of Ce addition on the microstructure and mechanical properties of extruded Mg-Sn-Al-Zn alloy[J]. Materials Science and Engineering: A,2016,657:406.
14 Ha H Y,Kim H J,Baek S M,et al. Improved corrosion resistance of extruded Mg-8Sn-1Zn-1Al alloy by microalloying with Mn[J]. Scripta Materialia,2015,109:38
15 Park S H,You B S. Effect of homogenization temperature on the microstructure and mechanical properties of extruded Mg-7Sn-1Al-1Zn alloy[J]. Journal of Alloys and Compounds,2015,637:332.
16 Sasaki T T,Elsayed F R,Nakata T,et al. Strong and ductile heat-treatable Mg-Sn-Zn-Al wrought alloys[J]. Acta Materialia,2015,99:176.
17 Zhao C Y,Pan F S,Zhao S,et al. Preparation and characterization of as-extruded Mg-Sn alloys for orthopedic applications[J]. Materials & Design,2015,70:60.
18 Yin D S,Zhang E L,Zeng S Y. Effect of Zn on mechanical property and corrosion property of extruded Mg-Zn-Mn alloy[J]. Transactions of Nonferrous Metals Society of China,2008,18(4):763.
19 Wu H. Uniaxial tensile and compressive deformation behaviouts of AZ31b magnesium alloy at cryogenic temperatures[D]. Harbin:Harbin Institute of Technology,2015(in Chinese).
吴昊.AZ31B镁合金低温单轴拉伸和压缩变形行为研究[D].哈尔滨:哈尔滨工业大学,2015.
20 Aghion E,Bronfin B,Eliezer D,et al. The art of developing new magnesium alloys for high temperature applications[C]∥2nd International Conference on Platform Science and Technology for Advanced Magnesium Alloys.Osaka, Japan,2003.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[4] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[5] 原禧敏, 杨宏伟, 李郁秀, 巢云秀, 李耀, 陈家林, 陈力. 无卤素离子辅助合成纳米银线及其在柔性透明导电薄膜中的应用[J]. 材料导报, 2019, 33(z1): 300-302.
[6] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[7] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[8] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[9] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[10] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[11] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[12] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[13] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[14] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[15] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed