Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 176-179    https://doi.org/10.11896/j.issn.1005-023X.2018.02.003
  物理   材料研究 |材料 |
La和Nb共掺提高BiFeO3的磁学性能
邓施列,冼慧敏,陈熹,唐玲云,张弜,毛忠泉
华南理工大学物理与光电学院,广州 510640
Enhanced Magnetic Properties of Bismuth Ferrite by La and Nb Co-doping
Shilie DENG,Huimin XIAN,Xi CHEN,Lingyun TANG,Jiang ZHANG,Zhongquan MAO
Department of Physics, South China University of Technology, Guangzhou 510640
下载:  全 文 ( PDF ) ( 2723KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用溶胶-凝胶法成功制备了Bi1-xLaxFe0.99Nb0.01O3(x≤0.25)纳米颗粒样品,并研究了La和Nb共掺对BiFeO3样品的晶体结构、晶粒尺寸和磁学性质的影响。根据X射线衍射及Rietveld精修结果可知,所有样品都保持R3c空间结构,且Fe-O-Fe键角随着La掺杂量的增加而减小。XPS测试结果表明,La和少量Nb共掺不会引起样品中Fe 3+和Fe 2+含量的明显变化。磁性测量发现剩余磁化强度强烈依赖于La掺杂量x。La掺杂影响着反向旋转的FeO6八面体结构变化,而Nb离子掺杂会导致样品晶粒细化。共掺BiFeO3的磁性增强是两种影响机制协同作用的结果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓施列
冼慧敏
陈熹
唐玲云
张弜
毛忠泉
关键词:  铁酸铋  掺杂  磁学性能  晶格畸变    
Abstract: 

In the present work, a series of Bi1-xLaxFe0.99Nb0.01O3 (x≤0.25) nanopowders were prepared by sol-gel method, in order to investigate the crystalline structure, grain size and magnetic properties of La and Nb co-doped BiFeO3 nanopowders. All samples are consistent of an R3c rhombohedral structure with decreasing Fe-O-Fe bond angles as the La concentration increases, according to XRD and Rietveld refinement. The XPS data demonstrate that La and Nb co-doping do not change the ratio of Fe 3+ to Fe 2+ in doped BFO system. The remnant magnetization was found to depend markedly on La doping amount (x). It is shown that the La-doping dominates the anti-rotation of the FeO6 octahedral, while the low doping of Nb results in the refinement of the grains. Both mechanisms would give rise to the magnetization enhancement in bismuth ferrite.

Key words:  bismuth ferrite    doping    magnetic properties    lattice distortion
出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  O76  
基金资助: 国家自然科学基金(11304098;11504113)
引用本文:    
邓施列,冼慧敏,陈熹,唐玲云,张弜,毛忠泉. La和Nb共掺提高BiFeO3的磁学性能[J]. 《材料导报》期刊社, 2018, 32(2): 176-179.
Shilie DENG,Huimin XIAN,Xi CHEN,Lingyun TANG,Jiang ZHANG,Zhongquan MAO. Enhanced Magnetic Properties of Bismuth Ferrite by La and Nb Co-doping. Materials Reports, 2018, 32(2): 176-179.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.003  或          https://www.mater-rep.com/CN/Y2018/V32/I2/176
图1  Bi1-xLaxFe0.99Nb0.01O3系列样品的(a)XRD谱和(b)XRD局部放大谱
Sample Lattice parameter/?,Vol/?3 Bi-O/? Fe-O/? Fe-O-Fe/(°) Refined factors
BFO a=5.573 9(1), c=13.856 2(3)
V=372.81(1)
2.292 9 1.853 9
2.192 1
156.381 Rwp=6.05%
χ2=2.416
x=0.00 a=5.576 7(3), c=13.829 3(14)
V=372.46(1)
2.212 4 1.850 0
2.200 1
155.575 Rwp=7.17%
χ2=3.378
x=0.05 a=5.576 7(1), c=13.837 9(4)
V=372.70(2)
2.309 9 1.832 2
2.220 6
155.372 Rwp=5.57%
χ2=2.095
x=0.10 a=5.579 3(1), c=13.817 3(4)
V=372.48(2)
2.364 8 1.773 4
2.278 4
155.321 Rwp=6.59%
χ2=2.886
x=0.15 a=5.582 1(1), c=13.789 5(7)
V=372.11(2)
2.317 1 1.750 6
2.303 0
154.866 Rwp=6.42%
χ2=2.599
x=0.20 a=5.581 8(3), c=13.767 6(18)
V=371.48(2)
2.165 2 1.811 4
2.243 8
154.464 Rwp=7.97%
χ2=3.717
x=0.25 a=5.584 4(3), c=13.744 4(28)
V=371.20(2)
2.232 5 1.807 7
2.250 8
153.991 Rwp=7.86%
χ2=4.057
表1  BFO和Bi1-xLaxFe0.99Nb0.01O3样品精修结果
图2  Bi1-xLaxFe0.99Nb0.01O3样品的(a)晶格常数和(b)Fe-O-Fe键角与掺杂量x的关系
图3  Bi1-xLaxFe0.99Nb0.01O3样品的拉曼衍射谱
图4  BLFNO样品的SEM图
图5  BFO和Bi1-xLaxFe0.99Nb0.01O3样品的Fe2p 3/2 XPS拟合峰
图6  (a)BLFNO样品的磁滞回线;(b)BLFNO样品剩余磁化强度与x,y的关系(其中BiFe1-yNbyO3样品的数据来自文献[10])
1 Wang J, Neaton J B, Zheng H , et al. Epitaxial BiFeO3 multiferroic thin film heterostructures[J]. Science, 2003,299(5613):1719.
2 Yun K Y, Noda M, Okuyama M , et al. Giant ferroelectric polarization beyond 150 μC/cm 2 in BiFeO3 thin film [J]. Japanese Journal of Applied Physics, 2004,43(5A):647.
3 Zhang S T, Zhang Y, Lu M H , et al. Substitution-induced phase transition and enhanced multiferroic properties of Bi1-xLaxFeO3 ceramics[J].Applied Physics Letters, 2006, 88:1719-R.
4 Catalan G, Scott J F . Physics and applications of bismuth ferrite[J]. Advanced Materials, 2009,21:2463.
5 Ederer C, Spaldin N A . Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite[J]. Physical Review B, 2005,71:060401.
6 Zvezdin A K, Pyatakov A P . On the problem of coexistence of the weak ferromagneticsm and the spin flexoelectricity in multiferroic bismuth ferrite[J]. Europhysics Letters, 2012,99:57003.
7 Lee Y, Wu J, Lai C . Influence of La doping in multiferroic properties of BiFeO3 thin films[J]. Applied Physics Letters, 2006,88:042903.
8 Singh H, Yadav K L . Dielectric, magnetic and magnetoelectric properties of La and Nb codoped bismuth ferrite[J]. Journal of Phy-sics:Condensed Matter, 2011,23:38590.
9 Khomchenko V A, Paix?o J A . Effect of Nb doping on the morpho-logy and multiferroic behavior of Bi0.9La0.1FeO3 ceramics[J]. Materials Letters, 2016,169:180.
10 Xian H, Du Y, Zhang J , et al. Structural, magnetic and optical properties of BiFe1-xNbxO3[J]. Chinese Journal of Chemical Phy-sics, 2016,29(5):578.
11 Cheng Z X, Li A H, Wang X L, et al. Structure, ferroelectric pro-perties , magnetic properties of the La-doped bismuth ferrite[J].Journal of Applied Physics, 2008, 103:07E507.
12 Sharma P, Kumar A, Varshney D . Enhanced magnetic response in single-phase Bi0.80La0.15A0.05FeO3-δ (A=Ca, Sr, Ba) ceramics[J]. Solid State Communications, 2015,220:6.
13 Hlinka J, Pokorny J, Karimi S , et al. Angular dispersion of oblique phonon modes in BiFeO3 from micro-Raman scattering[J]. Physical Review B, 2011,83:020101.
14 Zhang J, Wu Y J, Chen X K , et al. Structural evolution and magnetization enhancement of Bi1-xTbxFeO3[J]. Journal of Physics and Chemistry of Solids, 2013,74:849.
15 Jeon N, Rout D, Kim I W , et al. Enhanced multiferroic properties of single-phase BiFeO3 bulk ceramics by Ho doping[J]. Applied Physics Letters, 2011,98:072901.
16 Fukumura H, Matsui S, Tonari N , et al. Synjournal and characte-rization of Mn-doped BiFeO3 nanoparticles[J]. Acta Physica Polonica A, 2009,116:47.
17 Chantry G W . In the Raman effect[M]. New York:Marcel Dekker.Inc, 1971: 1.
18 Bielecki J, Svedlindh P, Tibebu D T , et al. Structural and magnetic properties of isovalently substituted multiferroic BiFeO3: Insights from Raman spectroscopy[J]. Physical Review B, 2012,86:184422.
19 Goffinet M, Hermet P, Bilc D I , et al. Hybrid functional study of prototypical multiferroic bismuth ferrite[J]. Physical Review B, 2009,79:014403.
20 Wang J, Scholl A, Zheng H , et al. Response to comment on “Epitaxial BiFeO3 multiferroic thin film heterostructres”[J]. Science, 2005,307:1203b.
21 Mazumder R, Devi P S, Bhattacharya D , et al. Ferromagnetism in nanoscale BiFeO3[J]. Applied Physics Letters, 2007,91:062510.
22 Dutta D P, Jayakumar O D, Tyagi A K , et al. Effect of doping on the morphology and multiferroic properties of BiFeO3 nanorods[J]. Nanoscale, 2010,2:1149.
[1] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[2] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[3] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[4] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[5] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[6] 列维茨基·谢尔盖, 曹泽祥, 柯巴·亚历山大, 柯巴·玛丽亚. 激光辐射波长和脉冲寿命对碲化镉熔化阈值的影响[J]. 材料导报, 2024, 38(7): 22120127-6.
[7] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[8] 陈艳丽, 解自奇, 王梦真, 马子晗, 李姗姗, 颜文超, 李法强. 基于缺陷工程改性富锂层状材料的研究现状[J]. 材料导报, 2024, 38(4): 22070108-9.
[9] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[10] 贾宇盟, 史忠祥, 王晶, 李翔. Sm3+掺杂LaOF荧光粉的制备及光学性能[J]. 材料导报, 2024, 38(3): 22100249-7.
[11] 张晓君, 武佳龙, 乔楠, 于大禹, 孙墨杰, 陈景. 氮掺杂木质素基碳量子点在次氯酸根离子检测中的应用[J]. 材料导报, 2024, 38(24): 23050197-5.
[12] 张而耕, 刘江, 蔡远飞, 梁丹丹, 陈强, 周琼, 黄彪. Cr掺杂对TiAlN涂层的择优取向和摩擦性能的影响机理[J]. 材料导报, 2024, 38(24): 23080252-6.
[13] 陈轶思, 张宏图, 王彬彬, 李瑶. ZIF-8衍生氮掺杂多孔碳的制备及其对低浓度煤层气中CH4/N2的吸附分离研究[J]. 材料导报, 2024, 38(24): 23090093-8.
[14] 唐新德, 刘水林, 伍素云, 刘宁, 张春燕, 龚升高. Ti3+/C/N-TiO2@NGQDs纳米复合光催化剂的制备及其可见光催化性能研究[J]. 材料导报, 2024, 38(23): 23090142-6.
[15] 谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed