Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 176-179    https://doi.org/10.11896/j.issn.1005-023X.2018.02.003
  物理   材料研究 |材料 |
La和Nb共掺提高BiFeO3的磁学性能
邓施列,冼慧敏,陈熹,唐玲云,张弜,毛忠泉
华南理工大学物理与光电学院,广州 510640
Enhanced Magnetic Properties of Bismuth Ferrite by La and Nb Co-doping
Shilie DENG,Huimin XIAN,Xi CHEN,Lingyun TANG,Jiang ZHANG,Zhongquan MAO
Department of Physics, South China University of Technology, Guangzhou 510640
下载:  全 文 ( PDF ) ( 2723KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用溶胶-凝胶法成功制备了Bi1-xLaxFe0.99Nb0.01O3(x≤0.25)纳米颗粒样品,并研究了La和Nb共掺对BiFeO3样品的晶体结构、晶粒尺寸和磁学性质的影响。根据X射线衍射及Rietveld精修结果可知,所有样品都保持R3c空间结构,且Fe-O-Fe键角随着La掺杂量的增加而减小。XPS测试结果表明,La和少量Nb共掺不会引起样品中Fe 3+和Fe 2+含量的明显变化。磁性测量发现剩余磁化强度强烈依赖于La掺杂量x。La掺杂影响着反向旋转的FeO6八面体结构变化,而Nb离子掺杂会导致样品晶粒细化。共掺BiFeO3的磁性增强是两种影响机制协同作用的结果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓施列
冼慧敏
陈熹
唐玲云
张弜
毛忠泉
关键词:  铁酸铋  掺杂  磁学性能  晶格畸变    
Abstract: 

In the present work, a series of Bi1-xLaxFe0.99Nb0.01O3 (x≤0.25) nanopowders were prepared by sol-gel method, in order to investigate the crystalline structure, grain size and magnetic properties of La and Nb co-doped BiFeO3 nanopowders. All samples are consistent of an R3c rhombohedral structure with decreasing Fe-O-Fe bond angles as the La concentration increases, according to XRD and Rietveld refinement. The XPS data demonstrate that La and Nb co-doping do not change the ratio of Fe 3+ to Fe 2+ in doped BFO system. The remnant magnetization was found to depend markedly on La doping amount (x). It is shown that the La-doping dominates the anti-rotation of the FeO6 octahedral, while the low doping of Nb results in the refinement of the grains. Both mechanisms would give rise to the magnetization enhancement in bismuth ferrite.

Key words:  bismuth ferrite    doping    magnetic properties    lattice distortion
               出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  O76  
基金资助: 国家自然科学基金(11304098;11504113)
引用本文:    
邓施列,冼慧敏,陈熹,唐玲云,张弜,毛忠泉. La和Nb共掺提高BiFeO3的磁学性能[J]. 《材料导报》期刊社, 2018, 32(2): 176-179.
Shilie DENG,Huimin XIAN,Xi CHEN,Lingyun TANG,Jiang ZHANG,Zhongquan MAO. Enhanced Magnetic Properties of Bismuth Ferrite by La and Nb Co-doping. Materials Reports, 2018, 32(2): 176-179.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.003  或          http://www.mater-rep.com/CN/Y2018/V32/I2/176
图1  Bi1-xLaxFe0.99Nb0.01O3系列样品的(a)XRD谱和(b)XRD局部放大谱
Sample Lattice parameter/?,Vol/?3 Bi-O/? Fe-O/? Fe-O-Fe/(°) Refined factors
BFO a=5.573 9(1), c=13.856 2(3)
V=372.81(1)
2.292 9 1.853 9
2.192 1
156.381 Rwp=6.05%
χ2=2.416
x=0.00 a=5.576 7(3), c=13.829 3(14)
V=372.46(1)
2.212 4 1.850 0
2.200 1
155.575 Rwp=7.17%
χ2=3.378
x=0.05 a=5.576 7(1), c=13.837 9(4)
V=372.70(2)
2.309 9 1.832 2
2.220 6
155.372 Rwp=5.57%
χ2=2.095
x=0.10 a=5.579 3(1), c=13.817 3(4)
V=372.48(2)
2.364 8 1.773 4
2.278 4
155.321 Rwp=6.59%
χ2=2.886
x=0.15 a=5.582 1(1), c=13.789 5(7)
V=372.11(2)
2.317 1 1.750 6
2.303 0
154.866 Rwp=6.42%
χ2=2.599
x=0.20 a=5.581 8(3), c=13.767 6(18)
V=371.48(2)
2.165 2 1.811 4
2.243 8
154.464 Rwp=7.97%
χ2=3.717
x=0.25 a=5.584 4(3), c=13.744 4(28)
V=371.20(2)
2.232 5 1.807 7
2.250 8
153.991 Rwp=7.86%
χ2=4.057
表1  BFO和Bi1-xLaxFe0.99Nb0.01O3样品精修结果
图2  Bi1-xLaxFe0.99Nb0.01O3样品的(a)晶格常数和(b)Fe-O-Fe键角与掺杂量x的关系
图3  Bi1-xLaxFe0.99Nb0.01O3样品的拉曼衍射谱
图4  BLFNO样品的SEM图
图5  BFO和Bi1-xLaxFe0.99Nb0.01O3样品的Fe2p 3/2 XPS拟合峰
图6  (a)BLFNO样品的磁滞回线;(b)BLFNO样品剩余磁化强度与x,y的关系(其中BiFe1-yNbyO3样品的数据来自文献[10])
1 Wang J, Neaton J B, Zheng H , et al. Epitaxial BiFeO3 multiferroic thin film heterostructures[J]. Science, 2003,299(5613):1719.
2 Yun K Y, Noda M, Okuyama M , et al. Giant ferroelectric polarization beyond 150 μC/cm 2 in BiFeO3 thin film [J]. Japanese Journal of Applied Physics, 2004,43(5A):647.
3 Zhang S T, Zhang Y, Lu M H , et al. Substitution-induced phase transition and enhanced multiferroic properties of Bi1-xLaxFeO3 ceramics[J].Applied Physics Letters, 2006, 88:1719-R.
4 Catalan G, Scott J F . Physics and applications of bismuth ferrite[J]. Advanced Materials, 2009,21:2463.
5 Ederer C, Spaldin N A . Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite[J]. Physical Review B, 2005,71:060401.
6 Zvezdin A K, Pyatakov A P . On the problem of coexistence of the weak ferromagneticsm and the spin flexoelectricity in multiferroic bismuth ferrite[J]. Europhysics Letters, 2012,99:57003.
7 Lee Y, Wu J, Lai C . Influence of La doping in multiferroic properties of BiFeO3 thin films[J]. Applied Physics Letters, 2006,88:042903.
8 Singh H, Yadav K L . Dielectric, magnetic and magnetoelectric properties of La and Nb codoped bismuth ferrite[J]. Journal of Phy-sics:Condensed Matter, 2011,23:38590.
9 Khomchenko V A, Paix?o J A . Effect of Nb doping on the morpho-logy and multiferroic behavior of Bi0.9La0.1FeO3 ceramics[J]. Materials Letters, 2016,169:180.
10 Xian H, Du Y, Zhang J , et al. Structural, magnetic and optical properties of BiFe1-xNbxO3[J]. Chinese Journal of Chemical Phy-sics, 2016,29(5):578.
11 Cheng Z X, Li A H, Wang X L, et al. Structure, ferroelectric pro-perties , magnetic properties of the La-doped bismuth ferrite[J].Journal of Applied Physics, 2008, 103:07E507.
12 Sharma P, Kumar A, Varshney D . Enhanced magnetic response in single-phase Bi0.80La0.15A0.05FeO3-δ (A=Ca, Sr, Ba) ceramics[J]. Solid State Communications, 2015,220:6.
13 Hlinka J, Pokorny J, Karimi S , et al. Angular dispersion of oblique phonon modes in BiFeO3 from micro-Raman scattering[J]. Physical Review B, 2011,83:020101.
14 Zhang J, Wu Y J, Chen X K , et al. Structural evolution and magnetization enhancement of Bi1-xTbxFeO3[J]. Journal of Physics and Chemistry of Solids, 2013,74:849.
15 Jeon N, Rout D, Kim I W , et al. Enhanced multiferroic properties of single-phase BiFeO3 bulk ceramics by Ho doping[J]. Applied Physics Letters, 2011,98:072901.
16 Fukumura H, Matsui S, Tonari N , et al. Synjournal and characte-rization of Mn-doped BiFeO3 nanoparticles[J]. Acta Physica Polonica A, 2009,116:47.
17 Chantry G W . In the Raman effect[M]. New York:Marcel Dekker.Inc, 1971: 1.
18 Bielecki J, Svedlindh P, Tibebu D T , et al. Structural and magnetic properties of isovalently substituted multiferroic BiFeO3: Insights from Raman spectroscopy[J]. Physical Review B, 2012,86:184422.
19 Goffinet M, Hermet P, Bilc D I , et al. Hybrid functional study of prototypical multiferroic bismuth ferrite[J]. Physical Review B, 2009,79:014403.
20 Wang J, Scholl A, Zheng H , et al. Response to comment on “Epitaxial BiFeO3 multiferroic thin film heterostructres”[J]. Science, 2005,307:1203b.
21 Mazumder R, Devi P S, Bhattacharya D , et al. Ferromagnetism in nanoscale BiFeO3[J]. Applied Physics Letters, 2007,91:062510.
22 Dutta D P, Jayakumar O D, Tyagi A K , et al. Effect of doping on the morphology and multiferroic properties of BiFeO3 nanorods[J]. Nanoscale, 2010,2:1149.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[3] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[4] 潘云, 吴承仁, 陈绍维, 伍小波. 氧还原催化材料与催化机理及活性位点的研究进展[J]. 材料导报, 2019, 33(z1): 41-44.
[5] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[6] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[7] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[8] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[9] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[10] 阿比迪古丽·萨拉木, 吾尔尼沙·依明尼亚孜, 买买提热夏提·买买提, 吴钊峰. 掺杂对BiFeO3薄膜电、磁特性影响综述[J]. 材料导报, 2019, 33(5): 791-796.
[11] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[12] 周宏明, 王博益, 李荐, 程名辉. CuO掺杂对钇钡铜氧陶瓷电性能的影响[J]. 材料导报, 2019, 33(2): 220-224.
[13] 莫晓华, 蒋卫卿. Fe、Co和Ni掺杂LiBH4放氢性能的第一性原理研究[J]. 材料导报, 2019, 33(2): 225-229.
[14] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[15] 李怀明, 孙秋, 宋英. W掺杂对Zn0.98Al0.02O陶瓷热电性能的影响[J]. 材料导报, 2019, 33(12): 1959-1962.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed