Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (21): 146-150    https://doi.org/10.11896/j.issn.1005-023X.2017.021.021
  多孔材料 |
还原氮化法制备多孔氮化钛粉体及其电化学性能*
刘盼1, 2, 魏恒勇1, 2, 卜景龙1, 2, 倪洁1, 2, 吕东风1, 2, 崔燚1, 2
1 华北理工大学材料科学与工程学院,唐山 063000;
2 河北省无机非金属材料重点实验室,唐山 063009
Preparation of Porous Titanium Nitride Powders by Reduction Nitridation and Its Electrochemical Performance
LIU Pan1,2, WEI Hengyong1,2, BU Jinglong1,2, NI Jie1,2, LU Dongfeng1,2, CUI Yi1,2
1 College of Material Science and Engineering, North China University of Science and Technology, Tangshan 063000;
2 Key Laboratory for Inorganic Nonmetallic Materials of Hebei Provincial, Tangshan 063009
下载:  全 文 ( PDF ) ( 1925KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以乙醇为氧供体,四氯化钛为钛源,采用非水解溶胶-凝胶法制备多孔TiO2粉体,再经900 ℃氨气还原氮化合成多孔TiN粉体。利用XRD、SEM和BET表征粉体的物相、形貌及孔结构。结果表明,还原氮化产物为NaCl型立方TiN,颗粒呈球形团聚体,晶粒尺寸均匀,直径约30 nm,同时具有平均孔径为22 nm的介孔结构,孔容为0.18 cm3/g,比表面积为34 m2/g。循环伏安测试表明TiN粉体具有良好的功率特性,交流阻抗图谱显示其电阻较小,约为1.44 Ω。恒流充放电测试表明TiN粉体的比电容达到81 F/g,且能量密度随着功率密度增加而缓慢减小。由此可知,该多孔TiN粉体在超级电容器领域有应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘盼
魏恒勇
卜景龙
倪洁
吕东风
崔燚
关键词:  氮化钛粉体  多孔  还原氮化  电化学    
Abstract: The porous TiO2 powder was prepared by non-hydrolytic sol-gel method using ethanol as the oxygen donor and titanium tetrachloride as the titanium source. The porous TiN powder was synthesized via nitrogen reduction of the porous TiO2 powder at 900 ℃. The XRD, SEM and BET results indicate that the product nitrogen reduction was TiN with NaCl-type cubic phase, and the particles were spherical aggregates. It was found that the grain size of powder was uniform and the diameter was about 30 nm. The product has a mesoporous structure that the average pore size was 22 nm and the pore volume was 0.18 cm3/g. The specific surface area of TiN powder was 34 m2/g. Cyclic voltammetry tests showed that the TiN powder had good power characteristics. And it showed small resistance of about 1.44 Ω by EIS. The specific capacitance of TiN powder also reached 81 F/g, and the energy density of it decreased slowly with the increase of power density. It has been found that porous TiN powders have good electrochemical properties and it has potential applications in the field of supercapacitors.
Key words:  titanium nitride powder    porous    reduction nitridation    electrochemistry
               出版日期:  2017-11-10      发布日期:  2018-05-08
ZTFLH:  TB34  
  O614.41+1  
基金资助: *国家自然科学基金 (51272066);河北省自然科学基金(E2013209183);华北理工大学青年科学研究基金(Z201413)
通讯作者:  魏恒勇,男,1981年生,博士,副教授,主要从事氮化物材料合成研究 E-mail:why_why2000@163.com   
作者简介:  刘盼:女,1993年生,硕士研究生,主要研究方向为氮化物材料电化学性能 E-mail:739210367@qq.com
引用本文:    
刘盼, 魏恒勇, 卜景龙, 倪洁, 吕东风, 崔燚. 还原氮化法制备多孔氮化钛粉体及其电化学性能*[J]. 《材料导报》期刊社, 2017, 31(21): 146-150.
LIU Pan, WEI Hengyong, BU Jinglong, NI Jie, LU Dongfeng, CUI Yi. Preparation of Porous Titanium Nitride Powders by Reduction Nitridation and Its Electrochemical Performance. Materials Reports, 2017, 31(21): 146-150.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.021.021  或          http://www.mater-rep.com/CN/Y2017/V31/I21/146
1 董友珍. 过渡金属氮化物在超级电容器中的应用[J]. 黑龙江大学自然科学学报, 2014,31(4):490.
2 Chang Y Q, Dong S M, Zhou X H, et al. Nano-structured transition metal nitrides for electrochemical energy storage devices[J]. J Chin Ceram Soc, 2016,44(8):1248(in Chinese).
常月琪, 董杉木, 周新红,等. 纳米结构过度金属氮化物用于电化学储能器件[J]. 硅酸盐学报, 2016,44(8):1248.
3 Bi W T, Hu Z P, Li X G, et al. Metallic mesocrystal nanosheets of vanadium nitride for high-performance all-solid-state pseudocapacitors[J]. Nano Res, 2015,8(1):193.
4 崔光磊, 李岚丰, 陈骁, 等. 超级电容器电极材料及制法和应用: CN, 201010544637.9[P]. 2012-05-23.
5 Wen Z H, Cui S M, Pu H H, et al. Metal nitride/graphene nanohybrids: General synthesis and multifunctional titanium nitride/graphene electrocatalyst[J]. Adv Mater, 2011,23(45):5445.
6 Dong S M, Chen X, Gu L, et al. Facile preparation of mesoporous titanium nitride microspheres for electrochemical energy storage[J]. ACS Appl Mater Interfaces, 2011,3(1):93.
7 Kato A, Iwata M, Hojo J I, et al. Titanium nitride powders by the vapor phase reaction of TiCl4-NH3-H2-N2 system[J]. J Ceram Soc Jpn, 1975,83(9):453.
8 Wang S T, Zhang Z D. Preparation of titanium nitride by chemical vapor deposition[J]. Prog Chem, 2003,15(5):373(in Chinese).
王淑涛, 张祖德. 化学气相沉积法制备氮化钛[J]. 化学进展, 2003,15(5):373.
9 孙康. TiC、TiN、TiB2的主要性质和合成方法[J]. 钒钛, 1995 (5):23.
10Li J G, Gao L, Zhang Q H, et al. Preparation of nano TiN powders and influence factors[J]. J Inorg Mater, 2003,18(4):765(in Chinese).
李景国, 高濂, 张青红, 等. 纳米氮化钛粉体的制备及其影响因素[J]. 无机材料学报, 2003,18(4):765.
11Zhang B, Cao C B, Li G B,et al. Synthesis of nanopowders of tita-nium nitride by in-situ nitridation of titanium oxide[J]. J Synth Cryst, 2004,33(4):613(in Chinese).
张冰, 曹传宝, 李国宝,等. 原位氮化法制备TiN纳米粉[J]. 人工晶体学报, 2004,33(4):613.
12Lee J M, Han S B, Song Y J, et al. Methanol electrooxidation of Pt catalyst on titanium nitride nanostructured support[J]. Appl Catal A:Gen, 2010, 375(1):149.
13Hasehawa G, Kitada A, Kawasaki S, et al. Impact of electrolyte on pseudocapacitance and stability of porous titanium nitride(TIN) monolithic electrode[J]. J Electrochem Soc, 2014, 162(1):4412.
14Zhang L, Lu X, Zhao Y Q, et al. TiN coated SiC composite powders produced by controlled hydrolysis[J]. Chin J Nonferr Met, 2012,22(10):2825(in Chinese).
章林, 路新, 赵玉强, 等. 醇盐水解法制备TiN包覆SiC复合粉末[J]. 中国有色金属学报, 2012,22(10):2825.
15Arnal P, Corriu R J P, Leclercq D, et al. Preparation of anatase, brookite and rutile at low temperature by non-hydrolytic sol-gel methods[J]. Mater Chem, 1996, 6(12):1925.
16Wang Y X, Xu M, Sun J. Preparation of TiO2 nanopowders by non-hydrolytic sol-gel and solvothermal synthesis[J]. Appl Mech Mater, 2012, 110-116: 1934.
17Wang X M, Xiao P. Morphology tuning in nontemplated solvothermal synthesis of titania nanoparticles[J]. Mater Sci Centre, 2006,21(5):1189.
18Cheng S, Yang L, Liu Y, et al. Carbon fiber paper supported hybrid nanonet/nanoflower nickel oxide electrodes for high-performance pseudo-capacitors[J]. Mater Chem A, 2013, 1(26):7709.
19Kohno K. Nitridation of the sol-gel derived TiO2, coating films and the infrared ray reflection[J]. J Mater Sci, 1992,27(3):658.
20Mi J, Li W C. Capacitance calculation of supercapacitors based on different test technologies[J]. Chin J Power Sources, 2014,38(7):1394(in Chinese).
米娟, 李文翠. 不同测试技术下超级电容器比电容值的计算[J]. 电源技术, 2014,38(7):1394.
21Sun G H, Li K X, Sun C G. Electrochemical performance of electrochemical capacitors using Cu(Ⅱ)-containing ionic liquid as the electrolyte[J]. Microp Mesop Mater, 2010,128(1-3):56.
22Zhou K, Zhou W J, Yang L J, et al. Ultrahigh-performance pseu-docapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: A general and effective approach[J]. Adv Funct Mater, 2015,25(48):7530.
23Zolfaghari A, Ataherian F, Ghaemi M, et al. Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method[J]. Electrochim Acta, 2007,52(8):2806.
24Peng X. Preperation and electrochemical performance evaluation of tin ntas based nano-composite materials electrode[D]. Wuhan: Wuhan University of Science and Technology, 2014(in Chinese).
彭祥. 基于TiN纳米管阵列复合材料电极的制备及其电化学性能研究[D]. 武汉: 武汉科技大学, 2014.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[3] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[4] 傅寅旭, 许雨熙, 诸葛黔, 王磊, 宋煦, 王旭. 金属有机骨架材料在生物样品前处理中的应用进展[J]. 材料导报, 2019, 33(z1): 408-411.
[5] 施方长, 王玉, 高延敏. 改性含N小分子用于金属表面锈层处理对环氧涂层防腐性能的研究[J]. 材料导报, 2019, 33(z1): 523-526.
[6] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[7] 吴靓, 汤智, 杨格, 刘艳, 许艳飞, 钱锦文, 肖逸锋, 贺跃辉. 用于过滤膜的梯度孔径Ni-Cr-Fe多孔材料的制备及性能[J]. 材料导报, 2019, 33(8): 1376-1382.
[8] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[9] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[10] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[11] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[12] 王一雍, 周新宇, 金辉, 梁智鹏. 超声辅助电沉积Ni-Co/Y2O3复合镀层的电化学研究[J]. 材料导报, 2019, 33(6): 1011-1016.
[13] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[14] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[15] 周薛霞,杨赞中,徐艳娇,王路,孙海滨,王永在,杜庆洋,乐红志. 轻质多孔混凝土防水剂的研究进展[J]. 材料导报, 2019, 33(15): 2546-2551.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed