Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (21): 146-150    https://doi.org/10.11896/j.issn.1005-023X.2017.021.021
  多孔材料 |
还原氮化法制备多孔氮化钛粉体及其电化学性能*
刘盼1, 2, 魏恒勇1, 2, 卜景龙1, 2, 倪洁1, 2, 吕东风1, 2, 崔燚1, 2
1 华北理工大学材料科学与工程学院,唐山 063000;
2 河北省无机非金属材料重点实验室,唐山 063009
Preparation of Porous Titanium Nitride Powders by Reduction Nitridation and Its Electrochemical Performance
LIU Pan1,2, WEI Hengyong1,2, BU Jinglong1,2, NI Jie1,2, LU Dongfeng1,2, CUI Yi1,2
1 College of Material Science and Engineering, North China University of Science and Technology, Tangshan 063000;
2 Key Laboratory for Inorganic Nonmetallic Materials of Hebei Provincial, Tangshan 063009
下载:  全 文 ( PDF ) ( 1925KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以乙醇为氧供体,四氯化钛为钛源,采用非水解溶胶-凝胶法制备多孔TiO2粉体,再经900 ℃氨气还原氮化合成多孔TiN粉体。利用XRD、SEM和BET表征粉体的物相、形貌及孔结构。结果表明,还原氮化产物为NaCl型立方TiN,颗粒呈球形团聚体,晶粒尺寸均匀,直径约30 nm,同时具有平均孔径为22 nm的介孔结构,孔容为0.18 cm3/g,比表面积为34 m2/g。循环伏安测试表明TiN粉体具有良好的功率特性,交流阻抗图谱显示其电阻较小,约为1.44 Ω。恒流充放电测试表明TiN粉体的比电容达到81 F/g,且能量密度随着功率密度增加而缓慢减小。由此可知,该多孔TiN粉体在超级电容器领域有应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘盼
魏恒勇
卜景龙
倪洁
吕东风
崔燚
关键词:  氮化钛粉体  多孔  还原氮化  电化学    
Abstract: The porous TiO2 powder was prepared by non-hydrolytic sol-gel method using ethanol as the oxygen donor and titanium tetrachloride as the titanium source. The porous TiN powder was synthesized via nitrogen reduction of the porous TiO2 powder at 900 ℃. The XRD, SEM and BET results indicate that the product nitrogen reduction was TiN with NaCl-type cubic phase, and the particles were spherical aggregates. It was found that the grain size of powder was uniform and the diameter was about 30 nm. The product has a mesoporous structure that the average pore size was 22 nm and the pore volume was 0.18 cm3/g. The specific surface area of TiN powder was 34 m2/g. Cyclic voltammetry tests showed that the TiN powder had good power characteristics. And it showed small resistance of about 1.44 Ω by EIS. The specific capacitance of TiN powder also reached 81 F/g, and the energy density of it decreased slowly with the increase of power density. It has been found that porous TiN powders have good electrochemical properties and it has potential applications in the field of supercapacitors.
Key words:  titanium nitride powder    porous    reduction nitridation    electrochemistry
出版日期:  2017-11-10      发布日期:  2018-05-08
ZTFLH:  TB34  
  O614.41+1  
基金资助: *国家自然科学基金 (51272066);河北省自然科学基金(E2013209183);华北理工大学青年科学研究基金(Z201413)
通讯作者:  魏恒勇,男,1981年生,博士,副教授,主要从事氮化物材料合成研究 E-mail:why_why2000@163.com   
作者简介:  刘盼:女,1993年生,硕士研究生,主要研究方向为氮化物材料电化学性能 E-mail:739210367@qq.com
引用本文:    
刘盼, 魏恒勇, 卜景龙, 倪洁, 吕东风, 崔燚. 还原氮化法制备多孔氮化钛粉体及其电化学性能*[J]. 《材料导报》期刊社, 2017, 31(21): 146-150.
LIU Pan, WEI Hengyong, BU Jinglong, NI Jie, LU Dongfeng, CUI Yi. Preparation of Porous Titanium Nitride Powders by Reduction Nitridation and Its Electrochemical Performance. Materials Reports, 2017, 31(21): 146-150.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.021.021  或          https://www.mater-rep.com/CN/Y2017/V31/I21/146
1 董友珍. 过渡金属氮化物在超级电容器中的应用[J]. 黑龙江大学自然科学学报, 2014,31(4):490.
2 Chang Y Q, Dong S M, Zhou X H, et al. Nano-structured transition metal nitrides for electrochemical energy storage devices[J]. J Chin Ceram Soc, 2016,44(8):1248(in Chinese).
常月琪, 董杉木, 周新红,等. 纳米结构过度金属氮化物用于电化学储能器件[J]. 硅酸盐学报, 2016,44(8):1248.
3 Bi W T, Hu Z P, Li X G, et al. Metallic mesocrystal nanosheets of vanadium nitride for high-performance all-solid-state pseudocapacitors[J]. Nano Res, 2015,8(1):193.
4 崔光磊, 李岚丰, 陈骁, 等. 超级电容器电极材料及制法和应用: CN, 201010544637.9[P]. 2012-05-23.
5 Wen Z H, Cui S M, Pu H H, et al. Metal nitride/graphene nanohybrids: General synthesis and multifunctional titanium nitride/graphene electrocatalyst[J]. Adv Mater, 2011,23(45):5445.
6 Dong S M, Chen X, Gu L, et al. Facile preparation of mesoporous titanium nitride microspheres for electrochemical energy storage[J]. ACS Appl Mater Interfaces, 2011,3(1):93.
7 Kato A, Iwata M, Hojo J I, et al. Titanium nitride powders by the vapor phase reaction of TiCl4-NH3-H2-N2 system[J]. J Ceram Soc Jpn, 1975,83(9):453.
8 Wang S T, Zhang Z D. Preparation of titanium nitride by chemical vapor deposition[J]. Prog Chem, 2003,15(5):373(in Chinese).
王淑涛, 张祖德. 化学气相沉积法制备氮化钛[J]. 化学进展, 2003,15(5):373.
9 孙康. TiC、TiN、TiB2的主要性质和合成方法[J]. 钒钛, 1995 (5):23.
10Li J G, Gao L, Zhang Q H, et al. Preparation of nano TiN powders and influence factors[J]. J Inorg Mater, 2003,18(4):765(in Chinese).
李景国, 高濂, 张青红, 等. 纳米氮化钛粉体的制备及其影响因素[J]. 无机材料学报, 2003,18(4):765.
11Zhang B, Cao C B, Li G B,et al. Synthesis of nanopowders of tita-nium nitride by in-situ nitridation of titanium oxide[J]. J Synth Cryst, 2004,33(4):613(in Chinese).
张冰, 曹传宝, 李国宝,等. 原位氮化法制备TiN纳米粉[J]. 人工晶体学报, 2004,33(4):613.
12Lee J M, Han S B, Song Y J, et al. Methanol electrooxidation of Pt catalyst on titanium nitride nanostructured support[J]. Appl Catal A:Gen, 2010, 375(1):149.
13Hasehawa G, Kitada A, Kawasaki S, et al. Impact of electrolyte on pseudocapacitance and stability of porous titanium nitride(TIN) monolithic electrode[J]. J Electrochem Soc, 2014, 162(1):4412.
14Zhang L, Lu X, Zhao Y Q, et al. TiN coated SiC composite powders produced by controlled hydrolysis[J]. Chin J Nonferr Met, 2012,22(10):2825(in Chinese).
章林, 路新, 赵玉强, 等. 醇盐水解法制备TiN包覆SiC复合粉末[J]. 中国有色金属学报, 2012,22(10):2825.
15Arnal P, Corriu R J P, Leclercq D, et al. Preparation of anatase, brookite and rutile at low temperature by non-hydrolytic sol-gel methods[J]. Mater Chem, 1996, 6(12):1925.
16Wang Y X, Xu M, Sun J. Preparation of TiO2 nanopowders by non-hydrolytic sol-gel and solvothermal synthesis[J]. Appl Mech Mater, 2012, 110-116: 1934.
17Wang X M, Xiao P. Morphology tuning in nontemplated solvothermal synthesis of titania nanoparticles[J]. Mater Sci Centre, 2006,21(5):1189.
18Cheng S, Yang L, Liu Y, et al. Carbon fiber paper supported hybrid nanonet/nanoflower nickel oxide electrodes for high-performance pseudo-capacitors[J]. Mater Chem A, 2013, 1(26):7709.
19Kohno K. Nitridation of the sol-gel derived TiO2, coating films and the infrared ray reflection[J]. J Mater Sci, 1992,27(3):658.
20Mi J, Li W C. Capacitance calculation of supercapacitors based on different test technologies[J]. Chin J Power Sources, 2014,38(7):1394(in Chinese).
米娟, 李文翠. 不同测试技术下超级电容器比电容值的计算[J]. 电源技术, 2014,38(7):1394.
21Sun G H, Li K X, Sun C G. Electrochemical performance of electrochemical capacitors using Cu(Ⅱ)-containing ionic liquid as the electrolyte[J]. Microp Mesop Mater, 2010,128(1-3):56.
22Zhou K, Zhou W J, Yang L J, et al. Ultrahigh-performance pseu-docapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: A general and effective approach[J]. Adv Funct Mater, 2015,25(48):7530.
23Zolfaghari A, Ataherian F, Ghaemi M, et al. Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method[J]. Electrochim Acta, 2007,52(8):2806.
24Peng X. Preperation and electrochemical performance evaluation of tin ntas based nano-composite materials electrode[D]. Wuhan: Wuhan University of Science and Technology, 2014(in Chinese).
彭祥. 基于TiN纳米管阵列复合材料电极的制备及其电化学性能研究[D]. 武汉: 武汉科技大学, 2014.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[3] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[4] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[5] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[6] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[7] 覃玲霜, 刘醒, 邓立波. 葡萄糖衍生多孔碳的表面电荷调控与电吸附Cd2+性能[J]. 材料导报, 2024, 38(6): 23040284-8.
[8] 苏咸凯, 解志鹏, 张达, 侯圣平, 杨斌, 梁风. 单壁碳纳米角的制备及电化学应用进展[J]. 材料导报, 2024, 38(6): 22100192-13.
[9] 李兰心, 潘牧, 郭伟. 质子交换膜燃料电池在线监测方法研究进展[J]. 材料导报, 2024, 38(6): 22070018-14.
[10] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[11] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[12] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[13] 万胤辰, 王匀, 李瑞涛, 徐磊, 于超, 顾宇佳. 无压烧结工艺对浆料直写式定向多孔铜组织及致密度的影响[J]. 材料导报, 2024, 38(3): 22040202-6.
[14] 高娜, 庞佩琦, 李智, 牟国栋, 崔天成, 杜贤龙, 李涛, 肖国萍. 电解工艺条件对Cu基催化剂电化学还原CO2的产物分布影响[J]. 材料导报, 2024, 38(24): 23100052-5.
[15] 杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed