Preparation of Porous Titanium Nitride Powders by Reduction Nitridation and Its Electrochemical Performance
LIU Pan1,2, WEI Hengyong1,2, BU Jinglong1,2, NI Jie1,2, LU Dongfeng1,2, CUI Yi1,2
1 College of Material Science and Engineering, North China University of Science and Technology, Tangshan 063000; 2 Key Laboratory for Inorganic Nonmetallic Materials of Hebei Provincial, Tangshan 063009
Abstract: The porous TiO2 powder was prepared by non-hydrolytic sol-gel method using ethanol as the oxygen donor and titanium tetrachloride as the titanium source. The porous TiN powder was synthesized via nitrogen reduction of the porous TiO2 powder at 900 ℃. The XRD, SEM and BET results indicate that the product nitrogen reduction was TiN with NaCl-type cubic phase, and the particles were spherical aggregates. It was found that the grain size of powder was uniform and the diameter was about 30 nm. The product has a mesoporous structure that the average pore size was 22 nm and the pore volume was 0.18 cm3/g. The specific surface area of TiN powder was 34 m2/g. Cyclic voltammetry tests showed that the TiN powder had good power characteristics. And it showed small resistance of about 1.44 Ω by EIS. The specific capacitance of TiN powder also reached 81 F/g, and the energy density of it decreased slowly with the increase of power density. It has been found that porous TiN powders have good electrochemical properties and it has potential applications in the field of supercapacitors.
刘盼, 魏恒勇, 卜景龙, 倪洁, 吕东风, 崔燚. 还原氮化法制备多孔氮化钛粉体及其电化学性能*[J]. 《材料导报》期刊社, 2017, 31(21): 146-150.
LIU Pan, WEI Hengyong, BU Jinglong, NI Jie, LU Dongfeng, CUI Yi. Preparation of Porous Titanium Nitride Powders by Reduction Nitridation and Its Electrochemical Performance. Materials Reports, 2017, 31(21): 146-150.
1 董友珍. 过渡金属氮化物在超级电容器中的应用[J]. 黑龙江大学自然科学学报, 2014,31(4):490. 2 Chang Y Q, Dong S M, Zhou X H, et al. Nano-structured transition metal nitrides for electrochemical energy storage devices[J]. J Chin Ceram Soc, 2016,44(8):1248(in Chinese). 常月琪, 董杉木, 周新红,等. 纳米结构过度金属氮化物用于电化学储能器件[J]. 硅酸盐学报, 2016,44(8):1248. 3 Bi W T, Hu Z P, Li X G, et al. Metallic mesocrystal nanosheets of vanadium nitride for high-performance all-solid-state pseudocapacitors[J]. Nano Res, 2015,8(1):193. 4 崔光磊, 李岚丰, 陈骁, 等. 超级电容器电极材料及制法和应用: CN, 201010544637.9[P]. 2012-05-23. 5 Wen Z H, Cui S M, Pu H H, et al. Metal nitride/graphene nanohybrids: General synthesis and multifunctional titanium nitride/graphene electrocatalyst[J]. Adv Mater, 2011,23(45):5445. 6 Dong S M, Chen X, Gu L, et al. Facile preparation of mesoporous titanium nitride microspheres for electrochemical energy storage[J]. ACS Appl Mater Interfaces, 2011,3(1):93. 7 Kato A, Iwata M, Hojo J I, et al. Titanium nitride powders by the vapor phase reaction of TiCl4-NH3-H2-N2 system[J]. J Ceram Soc Jpn, 1975,83(9):453. 8 Wang S T, Zhang Z D. Preparation of titanium nitride by chemical vapor deposition[J]. Prog Chem, 2003,15(5):373(in Chinese). 王淑涛, 张祖德. 化学气相沉积法制备氮化钛[J]. 化学进展, 2003,15(5):373. 9 孙康. TiC、TiN、TiB2的主要性质和合成方法[J]. 钒钛, 1995 (5):23. 10Li J G, Gao L, Zhang Q H, et al. Preparation of nano TiN powders and influence factors[J]. J Inorg Mater, 2003,18(4):765(in Chinese). 李景国, 高濂, 张青红, 等. 纳米氮化钛粉体的制备及其影响因素[J]. 无机材料学报, 2003,18(4):765. 11Zhang B, Cao C B, Li G B,et al. Synthesis of nanopowders of tita-nium nitride by in-situ nitridation of titanium oxide[J]. J Synth Cryst, 2004,33(4):613(in Chinese). 张冰, 曹传宝, 李国宝,等. 原位氮化法制备TiN纳米粉[J]. 人工晶体学报, 2004,33(4):613. 12Lee J M, Han S B, Song Y J, et al. Methanol electrooxidation of Pt catalyst on titanium nitride nanostructured support[J]. Appl Catal A:Gen, 2010, 375(1):149. 13Hasehawa G, Kitada A, Kawasaki S, et al. Impact of electrolyte on pseudocapacitance and stability of porous titanium nitride(TIN) monolithic electrode[J]. J Electrochem Soc, 2014, 162(1):4412. 14Zhang L, Lu X, Zhao Y Q, et al. TiN coated SiC composite powders produced by controlled hydrolysis[J]. Chin J Nonferr Met, 2012,22(10):2825(in Chinese). 章林, 路新, 赵玉强, 等. 醇盐水解法制备TiN包覆SiC复合粉末[J]. 中国有色金属学报, 2012,22(10):2825. 15Arnal P, Corriu R J P, Leclercq D, et al. Preparation of anatase, brookite and rutile at low temperature by non-hydrolytic sol-gel methods[J]. Mater Chem, 1996, 6(12):1925. 16Wang Y X, Xu M, Sun J. Preparation of TiO2 nanopowders by non-hydrolytic sol-gel and solvothermal synthesis[J]. Appl Mech Mater, 2012, 110-116: 1934. 17Wang X M, Xiao P. Morphology tuning in nontemplated solvothermal synthesis of titania nanoparticles[J]. Mater Sci Centre, 2006,21(5):1189. 18Cheng S, Yang L, Liu Y, et al. Carbon fiber paper supported hybrid nanonet/nanoflower nickel oxide electrodes for high-performance pseudo-capacitors[J]. Mater Chem A, 2013, 1(26):7709. 19Kohno K. Nitridation of the sol-gel derived TiO2, coating films and the infrared ray reflection[J]. J Mater Sci, 1992,27(3):658. 20Mi J, Li W C. Capacitance calculation of supercapacitors based on different test technologies[J]. Chin J Power Sources, 2014,38(7):1394(in Chinese). 米娟, 李文翠. 不同测试技术下超级电容器比电容值的计算[J]. 电源技术, 2014,38(7):1394. 21Sun G H, Li K X, Sun C G. Electrochemical performance of electrochemical capacitors using Cu(Ⅱ)-containing ionic liquid as the electrolyte[J]. Microp Mesop Mater, 2010,128(1-3):56. 22Zhou K, Zhou W J, Yang L J, et al. Ultrahigh-performance pseu-docapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: A general and effective approach[J]. Adv Funct Mater, 2015,25(48):7530. 23Zolfaghari A, Ataherian F, Ghaemi M, et al. Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method[J]. Electrochim Acta, 2007,52(8):2806. 24Peng X. Preperation and electrochemical performance evaluation of tin ntas based nano-composite materials electrode[D]. Wuhan: Wuhan University of Science and Technology, 2014(in Chinese). 彭祥. 基于TiN纳米管阵列复合材料电极的制备及其电化学性能研究[D]. 武汉: 武汉科技大学, 2014.