Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 117-120    https://doi.org/10.11896/j.issn.1005-023X.2017.016.024
  材料研究 |
Ti40阻燃钛合金电子束焊接头组织与力学性能*
江畅1, 黄春平1,2, 夏春1, 柯黎明1
1 南昌航空大学轻合金加工科学与技术国防重点学科实验室, 南昌 330063;
2 西北工业大学凝固技术国家重点实验室, 西安 710072
Microstructure and Mechanical Properties of Ti40 Burn Resistant Titanium Alloy Joints by Electron Beam Welding
JIANG Chang1, HUANG Chunping1,2, XIA Chun1, KE Liming1
1 National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University, Nanchang 330063;
2 State Key Laboratory of Solidification Processing,Northwestern Polytechnical University, Xi’an 710072
下载:  全 文 ( PDF ) ( 1530KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用不同工艺参数对2 mm厚Ti40阻燃钛合金进行电子束焊接(EBW),通过金相分析、电子探针(EPMA)、室温拉伸以及显微硬度测试对Ti40阻燃钛合金电子束焊接接头的显微组织和力学性能进行分析。结果表明,焊缝中分布着晶粒内部有片层状组织析出的β柱状晶和少量等轴β晶粒,熔合线到焊缝中心晶粒逐渐细化,无明显热影响区。接头中易产生气孔、裂纹等缺陷,通过添加直线扫描波形能够有效地控制焊缝气孔缺陷,从而提高接头的强度。添加直线扫描波形电子束焊的Ti40阻燃钛合金的抗拉强度仍可达到917 MPa,断口呈现出脆性断裂与韧性断裂的混合特征,焊缝区的硬度高于母材,其最大值为376HV。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
江畅
黄春平
夏春
柯黎明
关键词:  Ti40阻燃钛合金  电子束焊  组织  力学性能    
Abstract: The Ti40 thick and Ti40 burn resistant titanium alloy in 2 mm was welded by electron beam with different welding parameter. Microstructure and mechanical properties of Ti40 burn resistant titanium alloy joints were studied by metallographic analysis, electron probe microanalysis, room-temperature tensile test and micro-hardness test. The results showed that β columnar crystal with intragranular slice layer structure and a few equiaxed β grain were distributed in the weld seam. Additionally, grain size of weld seam became finer from fusion line to the seam center and the heat affected zone is not distinct. Specifically, micro defects were easy to appear in the joints, such as pores and cracks, which could be effectively controlled by straight scanning waveform, and it would lead to the improvement of joint strength. The tensile strength of Ti40 burn resistant titanium alloy with straight scanning waveform EBW could reach at 917 MPa and the fracture was characterized with brittle and ductile fracture. The maximum hardness of the weld zone was 376HV which was higher than the base metal.
Key words:  Ti40 burn resistant titanium alloy    electron beam welding    microstructure    mechanical property
               出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TG456.3  
基金资助: 轻合金加工科学与技术国防重点学科实验室开放课题研究基金(GF201201004);西北工业大学凝固技术国家重点实验室开放课题(SKLSP201634)
通讯作者:  黄春平:通讯作者,男,1980年生,副教授,主要从事高能束焊接及搅拌摩擦焊加工制备复合材料技术研究 E-mail:hcp98106@163.com   
作者简介:  江畅:男,1992年生,硕士研究生,研究方向为钛合金高能束焊
引用本文:    
江畅, 黄春平, 夏春, 柯黎明. Ti40阻燃钛合金电子束焊接头组织与力学性能*[J]. 《材料导报》期刊社, 2017, 31(16): 117-120.
JIANG Chang, HUANG Chunping, XIA Chun, KE Liming. Microstructure and Mechanical Properties of Ti40 Burn Resistant Titanium Alloy Joints by Electron Beam Welding. Materials Reports, 2017, 31(16): 117-120.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.024  或          http://www.mater-rep.com/CN/Y2017/V31/I16/117
1 Shu Ying, Huang Zhanghong, Peng Wenwen, et al. High temperature tensile mechanical properties and fracture behavior of as-cast Ti40 burn resistant titanium alloy[J]. Mater Rev:Res,2014,28(10):84(in Chinese).
舒滢, 黄张洪, 彭雯雯,等. 铸态Ti40阻燃钛合金高温拉伸力学性能及断裂行为研究[J]. 材料导报:研究篇,2014,28(10):84.
2 Zhao Yongqing, Zhou Lian, Deng Ju. Microstructures after high temperature deformation of β Ti40 burn resistant titanium alloy as-casting[J]. Mater Mech Eng,2000,24(1):14(in Chinese).
赵永庆, 周廉, 邓炬. β型Ti40阻燃钛合金铸态组织高温变形的微观组织[J]. 机械工程材料,2000,24(1):14.
3 Zhao Yongqing, et al. The second phases and their effects on pro-perties in Ti40 burn resistant titanium alloy thermally exposed for long time[J]. Rare Met Mater Eng,2002,31(2):84(in Chinese).
赵永庆, 等. β型Ti40阻燃钛合金高温长期作用的第二相及其对性能的影响[J]. 稀有金属材料与工程,2002,31(2):84.
4 Xin Shewei, Zhao Yongqing, Zeng Weidong, et al. Effect of thermal exposure eat 550 ℃ on mechanical properties of Ti40 burn resistant titanium alloy[J]. Heat Treat Met,2007,32(9):55(in Chinese).
辛社伟, 赵永庆, 曾卫东,等. 550 ℃热暴露对Ti40阻燃钛合金力学性能的影响[J]. 金属热处理,2007,32(9):55.
5 Xin Shewei, Zhao Yongqing, Zeng Weidong, et al. Analysis and discussion of mechanical properties and microstructure developments for Ti40 alloy thermal exposed at 550 ℃[J]. Rare Met Mater Eng,2008,37(3):423(in Chinese).
辛社伟, 赵永庆, 曾卫东,等. Ti40合金550 ℃热暴露组织和性能演化规律的分析与讨论[J]. 稀有金属材料与工程,2008,37(3):423.
6 Zhao Yongqing, Xin Shewei, Wu Huan, et al. Rare metal materials and engineering, effect of heat treatment on thermal stability of Ti40 alloy[J]. Rare Met Mater Eng,2008,37(4):660(in Chinese).
赵永庆, 辛社伟, 吴欢,等. 热处理对Ti40阻燃钛合金热稳定性能的影响[J]. 稀有金属材料与工程,2008,37(4):660.
7 Xia Shewei,Zhao Yongqing,Zeng Weiding.Heat treatment of Ti40 burn resistant titanium alloy[J]. Heat Treat Met,2008,33(5):68(in Chinese).
辛社伟, 赵永庆, 曾卫东. Ti40阻燃钛合金热处理的研究[J]. 金属热处理,2008,33(5):68.
8 Lai Yunjin, Zhang Pingxiang, Xin Shewei, et al. Research progress on engineered technology of burn-resistant titanium alloys in China[J]. Rare Met Mater Eng,2015(8):2067(in Chinese).
赖运金, 张平祥, 辛社伟,等. 国内阻燃钛合金工程化技术研究进展[J]. 稀有金属材料与工程,2015(8):2067.
9 牛济泰,孟令辉,张杰,等. 航空航天材料的焊接与胶接[M]. 北京:国防工业出版社,2012.
10 Hu Jianjun,Zou Yi,Hou Tianfeng. Application analysis of gear surface modification with large area low energy electron beam[J]. J Chongqing University of Technology: Natural Science,2014(7):35(in Chinese).
胡建军, 邹毅, 侯天凤. 大面积低能电子束对齿轮表面改性的应用分析[J]. 重庆理工大学学报:自然科学版,2014(7):35.
11 Chen Yuanfang,Ye Wei,Mao Rongshan, et al. Fraction and wear effect of Ni200 with high current pulsed electron beam[J]. J Chongqing University of Technology: Natural Science,2013,27(5):26(in Chinese).
陈元芳, 叶伟, 茆荣山,等. 强流脉冲电子束处理对Ni200摩擦磨损性能的影响[J]. 重庆理工大学学报:自然科学版,2013,27(5):26.
12 赵永庆,洪权,葛鹏,等. 钛及钛合金金相图谱[M].长沙:中南大学出版社,2011:99.
13 Huang Jianglin, Warnken N, Gebelin J C . On the mechanism of porosity formation during welding of titanium alloys[J]. Acta Mater,2012,60:3215.
14 Mohandas T, Banerjee D. Fusion zone microstructure and porosity in electron beam welds of an α+β titanium alloy[J]. Metall Mater Trans A,1999,30:789.
15 Gong Ping. Research on the factors influenced electron beam weld shape for TC4 titanium alloy[D]. Dalian: Dalian Jiaotong University,2007(in Chinese).
宫平. TC4钛合金电子束焊接工艺参数对焊缝形状的影响[D]. 大连:大连交通大学,2007.
16 Zhao Yongqing, Qu Henglei, Zhu Kangying, et al. The second phases in a burn resistant alloy-Ti40[J]. Rare Met Mater Eng,2001,30(6):413(in Chinese).
赵永庆, 曲恒磊, 朱康英, 等. Ti40阻燃钛合金中的第二相[J]. 稀有金属材料与工程,2001,30(6):413.
17 Xin Shewei, Zhao Yongqing, Zeng Weidong,et al. Mechanism of V and Cr on mechanical properties of Ti40 burn resistant titanium alloy[J]. Chin J Nonferr Met,2008,18(7):1216(in Chinese).
辛社伟, 赵永庆, 曾卫东, 等.钒和铬对Ti40阻燃钛合金力学性能的影响机制[J].中国有色金属学报,2008,18(7):1216.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[3] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[4] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[5] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[6] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[7] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[8] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[9] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[10] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[11] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[12] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[13] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[14] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[15] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed