Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 88-91    https://doi.org/10.11896/j.issn.1005-023X.2017.014.018
  材料研究 |
冷轧结合T6热处理对7075铝合金组织和性能的影响*
崔歆炜, 徐晓峰, 宁玉恒, 赵宇光
吉林大学材料科学与工程学院, 长春 130025;
Microstructure and Mechanical Properties of 7075 Al Alloy Processed by Combined Cold-rolling and T6 Heat-treatment
CUI Xinwei, XU Xiaofeng, NING Yuheng, ZHAO Yuguang
College of Materials Science and Engineering, Jilin University, Changchun 130025;
下载:  全 文 ( PDF ) ( 2801KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将7075铝合金经过先冷轧(Cold rolling,CR)后T6热处理(CR+T6)和先T6热处理后冷轧(T6+CR)两种方式进行处理,采用金相显微镜、透射电镜,结合材料拉伸力学性能分析研究了变形和热处理相结合对Al-Zn-Mg-Cu合金的影响。结果表明,先冷轧后T6热处理对合金抗拉强度和延伸率影响不大,而先T6热处理后冷轧的试样屈服强度和抗拉强度随着变形量的增大显著提高。T6+40%(T6+CR的最优参数)与60%+T6(CR+T6的最优参数)的试样相比消耗的能量少且强度和塑性都更好。不同程度的晶界强化和位错强化是促使CR+T6和T6+CR处理试样力学性能改变的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔歆炜
徐晓峰
宁玉恒
赵宇光
关键词:  铝合金  冷轧  时效  显微组织  力学性能    
Abstract: In order to examine the combined effect of plastic deformation and the T6 treatment on Al-Zn-Mg-Cu alloys, a 7075 Al alloy was subjected to cold-rolling (CR) deformation and T6 heat-treatment (T6) in two different routes of CR+T6 (CR followed with T6) and T6+CR (T6 treatment followed with CR), respectively, and characterized by optical microscopy, transmission electron microscope, and mechanical tensile property measurement. The results show that the cold-rolling before T6 heat treatment has less influences on the tensile strength and elongation of the CR+T6 samples. While the yield strength and ultimate tensile strength of T6+CR samples are remarkably improved with increasing the deformation, and the T6+40% deformation (the optimized T6+CR) sample exhibits superior strength with adequate plasticity, with less energy consumption compared with the 60% deformation T6 sample (the optimized CR+T6). Microstructure investigation reveals that the grain-boundary strengthening and dislocation streng-thening are the primary reasons for the improved mechanical properties of CR+T6 and T6+CR samples.
Key words:  aluminum alloy    cold rolling    aging    microstructure    mechanical property
               出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  TG146.2  
基金资助: *国家自然科学基金(51071075)
作者简介:  崔歆炜:女,1990年生,硕士,研究方向为金属材料强韧化 E-mail:cuixw14@mails.jlu.edu.cn 赵宇光:通讯作者,男,1955年生,博士,教授,博士研究生导师,研究方向为金属基复合材料、电致强化、高强耐热铝合金与合金强韧化 E-mail:zhaoyg@jlu.edu.cn 徐晓峰:通讯作者,男,1986年生,博士,讲师,研究方向为电致强化、高强耐热铝合金与合金强韧化 E-mail:xuxiaofeng@jlu.edu.cn
引用本文:    
崔歆炜, 徐晓峰, 宁玉恒, 赵宇光. 冷轧结合T6热处理对7075铝合金组织和性能的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 88-91.
CUI Xinwei, XU Xiaofeng, NING Yuheng, ZHAO Yuguang. Microstructure and Mechanical Properties of 7075 Al Alloy Processed by Combined Cold-rolling and T6 Heat-treatment. Materials Reports, 2017, 31(14): 88-91.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.018  或          http://www.mater-rep.com/CN/Y2017/V31/I14/88
1 Wu Y,Wen T,Zhu Z T. Development of research and application of aging treatment technology on 7xxx series aluminum alloys[J]. Mater Rev:Rev,2012,26(8):114(in Chinese).
吴颖,温彤,朱曾涛. 7xxx系铝合金时效处理的研究现状及应用进展[J]. 材料导报:综述篇,2012,26(8):114.
2 Song Y,Yang X Q,Cui L,et al.Defect features and mechanical pro-perties of friction stir lap welded dissimilar AA2024-AA7075 aluminum alloy sheets [J]. Mater Des,2014,55(55):9.
3 Wu H P,Wang Z X,Ma Y L,et al. Root cause for lighted structure on the cross section of rolled 5182 aluminum alloy plate [J]. J Chongqing University of Technology:Nat Sci,2017,31(4):58(in Chinese).
吴海鹏,王正曦,麻彦龙,等. 5182铝合金轧制板材截面亮线组织形成机理研究[J].重庆理工大学学报:自然科学,2017,31(4):58.
4 Shaeri M H,Salehi M T,Seyyedein S H,et al.Microstructure and mechanical properties of Al-7075 alloy processed by equal channel angular pressing combined with aging treatment [J]. Mater Des,2014,57(5):250.
5 Naimi A,Yousfi H,Trari M. Influence of cold rolling degree and ageing treatments on the precipitation hardening of 2024 and 7075 alloys [J]. Mechan Time-Dependent Mater,2013,17(3):285.
6 Ma K,Wen H,Hu T,et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy [J]. Acta Mater,2014,62(5):141.
7 Estrin Y,Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science [J]. Acta Mater,2013,61(3):782.
8 Zhu R F,Liu J N,Tang G Y,et al. Properties,microstructure and texture evolution of cold rolled Cu strips under electropulsing treatment [J]. J Alloys Compd,2012,544(24):203.
9 Panigrahi S K,Jayaganthan R. Development of ultrafine grained high strength age hardenable Al 7075 alloy by cryorolling [J]. Mater Des,2011,32(6):3150.
10 Eddahbi M,Jimenez J A,Ruano O A. Microstructure and creep behaviour of an Osprey processed and extruded Al-Cu-Mg-Ti-Ag alloy [J]. J Alloys Compd,2007,433:97.
11 Viana F,Pinto A M P,Santos H M C,et al. Retrogression and re-ageing of 7075 aluminium alloy: Microstructural characterization [J]. J Mater Process Technol,1999,92(99):54.
12 Bydogan M,et al. Improved resistance to stress-corrosion-cracking failures via optimized retrogression and reaging of 7075-T6 aluminum sheets [J]. Metall Mater Trans A,2008,39(39):2470.
13 Liu X Y,Pan Q L,Lu Z L,et al. Effects of solution treatment on the microstructure and mechanical properties of Al-Cu-Mg-Ag alloy [J]. Mater Des,2010,31:4392.
14 Tajally M,Huda Z,Masjuki H H. Effect of deformation and recrystallization conditions on tensile behavior of aluminum alloy 7075 [J]. Metal Sci Heat Treatment,2011,53(3):165.
15 Jian H G,Jiang F,Xu Z Y,et al. Study progress of high strength and tenacity Al-Zn-Mg-Cu aluminum alloy for aviation [J]. Mater Heat Treatment,2006,35(12):61(in Chinese).
蹇海根,姜锋,徐忠艳,等. 航空用高强韧Al-Zn-Mg-Cu系铝合金的研究进展[J].热加工工艺,2006,35(12):61
16 Rao A C U,Vasu V,Govindaraju M,et al. Influence of cold rolling and annealing on the tensile properties of aluminum 7075 alloy [J]. Procedia Mater Sci,2014,5:86.
17 Wang D,Ma Z Y. Effects of rolling process on microstructure and mechanical property of 7075 aluminum alloy [J]. Acta Metall Sin,2008,44(1):49(in Chinese).
王东,马宗义. 轧制工艺对7050铝合金显微组织和力学性能的影响[J].金属学报,2008,44(1):49.
18 Cheng S,Zhao Y H,Zhu Y T,et al. Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation [J]. Acta Mater,2007,55(17):5822.
19 Somekawa H,Mukai T. Hall-Petch relation for deformation twinning in solid solution magnesium alloys [J]. Mater Sci Eng A,2013,561:378.
20 Zhu Y H,Jiang J,Xiao Y K,et al. Electropulsing-induced microstructure evolution and its effect on electrical conductivity of (Bi0.25-Sb0.75)2Te3 thin films [J]. Scripta Mater,2013,69(3):219.
21 Zheng R,Sun Y,Ametama K,et al. Optimizing the strength and ductility of spark plasma sintered Al 2024 alloy by conventional thermo-mechanical treatment [J]. Mater Sci Eng A,2013,590(1):147.
22 Zhao Y L,Yang Z Q,et al. Double-peak age strengthening of cold-worked 2024 aluminum alloy [J]. Acta Mater,2013,61(5):1624.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 梁斌斌, 郭炜, 刘振兴, 杨洪广. 高活性氚钛靶膜固氦特性研究[J]. 材料导报, 2019, 33(z1): 153-157.
[4] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[5] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[6] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[7] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[8] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[9] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[10] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[11] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[12] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[13] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[14] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[15] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed