Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (11): 151-157    https://doi.org/10.11896/j.issn.1005-023X.2017.011.021
  金属腐蚀与防护 |
氯离子对球墨铸铁管土壤腐蚀影响机理研究*
郭浩1, 田一梅1, 裴云生2, 陈瑛1, 刘星飞1
1 天津大学环境科学与工程学院,天津 300072;
2 九三集团天津大豆科技有限公司,天津 300461
Mechanism of the Effect of Chloride Ions on Soil Corrosion for Ductile Iron Pipes
GUO Hao1, TIAN Yimei1, PEI Yunsheng2, CHEN Ying1, LIU Xingfei1
1 School of Environmental Science and Engineering, Tianjin University, Tianjin 300072;
2 Tianjin Soya Science and Technology Co. Ltd., Jiusan Group, Tianjin 300461
下载:  全 文 ( PDF ) ( 2280KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于埋片加速腐蚀试验,采用电化学阻抗谱测量和微观分析技术,研究了氯离子(Cl-)对球墨铸铁腐蚀规律、腐蚀层结构以及腐蚀产物的影响。主要结论如下:(1)球墨铸铁主要发生局部腐蚀,且随Cl-含量的增加,腐蚀速率增大,出现严重腐蚀坑;其腐蚀坑深与腐蚀时间成幂函数关系,当Cl-含量高于0.515%时,局部腐蚀情况尤为严重。(2)球墨铸铁腐蚀经历点蚀诱导期、点蚀发展期和稳定腐蚀期3个阶段;在前两个阶段电荷传递为腐蚀速率控制步骤,第三个阶段转变为氧的扩散控制。(3)腐蚀产物主要为铁的氧化物和羟基氧化物;高Cl-环境下产生的β-FeOOH和铁的羟基氯化物均能加速球墨铸铁的电化学腐蚀。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭浩
田一梅
裴云生
陈瑛
刘星飞
关键词:  球墨铸铁管  土壤腐蚀  氯离子  电化学阻抗谱    
Abstract: An accelerated buried coupon test coupled with electrochemical impedance spectroscopy and microanalysis was conducted to research the effect of chloride ions (Cl-) on soil corrosion mechanism, corrosion layer structure and corrosion products. The main conclusions are as follows. (1) Localized corrosion was the main corrosion type, and the corrosion rate and pitting depth of ductile iron increased with the increasing of Cl- content; the pitting depth and corrosion time presented a power function relationship, and the local corrosion was especially serious when the Cl- content was higher than 0.515%. (2) Three stages were observed during ductile iron corrosion: pitting induction stage, pitting developmental stage, and stable corrosion stage; charge transfer was the control step in the first two stages and oxygen mass diffusion turned to be the key step in the third stage. (3) Iron oxides and iron oxyhydroxides were main crystal minerals; β-FeOOH and ferrous oxychlorides appeared in high Cl- environment accelerated the electrochemical corrosion of ductile iron.
Key words:  ductile iron pipe    soil corrosion    chlorine ion    electrochemical impedance spectroscopy (EIS)
               出版日期:  2017-06-10      发布日期:  2018-05-04
ZTFLH:  TG172.4  
基金资助: 国家自然科学基金(51278333);高等学校博士学科点专项科研基金(20130032110032)
通讯作者:  田一梅:通讯作者,女,1959年生,博士,教授,博士研究生导师,研究方向为供水管道腐蚀与防护 E-mail:ymtian_2000@126.com   
作者简介:  郭浩:男,1987年生,博士研究生,研究方向为供水管道腐蚀与防护 E-mail:tjuguohao@163.com
引用本文:    
郭浩, 田一梅, 裴云生, 陈瑛, 刘星飞. 氯离子对球墨铸铁管土壤腐蚀影响机理研究*[J]. 《材料导报》期刊社, 2017, 31(11): 151-157.
GUO Hao, TIAN Yimei, PEI Yunsheng, CHEN Ying, LIU Xingfei. Mechanism of the Effect of Chloride Ions on Soil Corrosion for Ductile Iron Pipes. Materials Reports, 2017, 31(11): 151-157.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.011.021  或          http://www.mater-rep.com/CN/Y2017/V31/I11/151
1 Wang H W, Shen S M, Yu X C. Review on research methods of soil corrosion for buried pipeline steels[J]. J Nanjing University of Technology:Nat Sci Ed,2008,30(4):105(in Chinese).
王和文,沈士明,於孝春.埋地管道钢土壤腐蚀研究方法进展[J].南京工业大学学报,2008,30(4):105.
2 Li J H, Zhang Y, et al. Water supply ductile pipe and tube rupture reason analysis[J]. Heat Treat Met,2011(S1):351(in Chinese).
李家华,张颖,等.供水球墨铸铁管及管件破裂原因分析[J].金属热处理,2011(S1):351.
3 Yang J, et al. Trend of development of piping material of water supply[J]. Heilongjiang Environmental J,2002, 26(2):8(in Chinese).
杨锦,等.论给水管材发展的新趋向[J].黑龙江环境通报,2002,26(2):8.
4 Huang F, Yu L, Liu J, et al. Relative function of influence factors on pitting sensitivity of X70 steel in a simulated soil solution[J]. Corros Sci Protection Technol,2010,22(3):166(in Chinese).
黄峰,余璐,刘静,等.X70钢在模拟土壤溶液中点蚀敏感性影响因素交互作用研究[J].腐蚀科学与防护技术,2010,22(3):166.
5 Du N, Ye C, Tian W M, et al. 304 stainless steel pitting behavior by means of electrochemical impedance spectroscopy[J]. J Mater Eng,2014(6):68(in Chinese).
杜楠,叶超,田文明,等.304不锈钢点蚀行为的电化学阻抗谱研究[J].材料工程,2014(6):68.
6 Shi Y H, Yu Y, Liang P, et al. Corrosion behaviors of 316L stainless steel in chloride ion environment[J]. Mater Protection,2015, 48(8):29(in Chinese).
史艳华,于洋,梁平,等.316L不锈钢在氯离子环境中的腐蚀行为[J].材料保护,2015,48(8):29.
7 Gao Y. Study on chloride ion corrosion behaviors of long-distance pipeline[D]. Xi’an: Xi’an Shiyou University, 2013(in Chinese).
高英.长输管线氯离子腐蚀行为研究[D].西安:西安石油大学,2013.
8 Du X Y, et al. Influence of Cl- concentration in soil on the corrosion rate[J]. Guangdong Chem Ind,2001, 38(9):41(in Chinese).
杜新燕,等.氯离子浓度对土壤腐蚀速率的影响[J].广东化工,2001,38(9):41.
9 Maslehuddin M, Al-Zahrani M M, Ibrahim M, et al. Effect of chloride concentration in soil on reinforcement corrosion[J]. Constr Build Mater,2007,21(8):1825.
10 Li Y Q, Li J, Cai D C. Electrochemical study on the corrosion behavior of X70 steel in soil with different Cl-[J]. J China West Normal University:Nat Sci,2008,29(1):93(in Chinese).
李永强,李江,蔡铎昌.土壤中氯离子对X70钢腐蚀影响的电化学研究[J].西华师范大学学报,2008,29(1):93.
11 Ma Y, et al. Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corros Sci,2009, 51(5):997.
12 Alizadeh M, et al. The influence of microstructure on the protective properties of the corrosion product layer generated on the welded API X70 steel in chloride solution[J]. Corros Sci,2013,70(3):170.
13 Gadala I M, Alfantazi A. Electrochemical behavior of API-X100 pipeline steel in NS4, near-neutral, and mildly alkaline pH simulated soil solutions[J]. Corros Sci,2014,82(5):45.
14 Yin G Q, Zhang L H, Chang S W, et al. A brief introduction of methods used in soil corrosion researches[J]. Corros Sci Protection Technol,2004,16(6):367(in Chinese).
尹桂勤,张莉华,常守文,等.土壤腐蚀研究方法概述[J].腐蚀科学与防护技术,2004,16(6):367.
15 Xie Y, Li Y, Sun T, et al. Study on the protection performance of γ-FeOOH and α-FeOOH formed in-situ on Q235[J]. Chinese Sci Bull,2008(23):2848(in Chinese).
谢颖,李瑛,孙挺,等.原位生长的纯γ-FeOOH和α-FeOOH锈膜对Q235钢保护性能的研究[J].科学通报,2008(23):2848.
16 Nie X H, Li Y L, Li J K, et al. Morphology, products and corrosion mechanism analysis of Q235 carbon steel in sea-shore salty soil[J]. J Mater Eng,2010(8):24(in Chinese).
聂向晖,李云龙,李记科,等.Q235碳钢在滨海盐土中的腐蚀形貌、产物及机理分析[J].材料工程,2010(8):24.
17 Yang F, Shi B Y, Gu J, et al. Morphological and physicochemical characteristics of iron corrosion scales formed under different water source histories in a drinking water distribution system[J]. Water Res,2012,46(16):5423.
18 Nishimura T, Noda K, Kodama T, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions[J]. Corrosion,2000,56(9):935.
19 Kamimura T, Hara S, Miyuki H, et al. Composition and protective ability of rust layer formed on weathering steel exposed to various environments[J]. Corros Sci,2006,48(9):2799.
20 Refait P, Génin J M R. The mechanisms of oxidation of ferrous hydroxychloride β-Fe2(OH)3Cl in aqueous solution: The formation of akaganeite vs goethite[J]. Corros Sci,1997,39(3):539.
21 Neff D, Dillmann P, Bellot-Gurlet L, et al. Corrosion of iron archaeo-logical artefacts in soil: Characterisation of the corrosion system[J]. Corros Sci,2005,47(2):515.
22 Wei D, Xiao K, Chen C F, et al. Localized electrochemical impe-dance spectroscopy of the corrosion behavior of carbon steel in the alkaline solutions with Cl- and SO42-[J]. Sci Technol Rev,2013,31(20):43(in Chinese).
魏丹,肖葵,陈长风,等.碳钢在含Cl-和SO42-碱性溶液中腐蚀规律的局部交流阻抗[J].科技导报,2013,31(20):43.
23 Xu C M. Corrosion electrochemical characteristics of X80 pipeline steel in southwest area soil[J]. J Iron Steel Res,2001,23(9):25(in Chinese).
胥聪敏.X80管线钢在西南地区土壤中的腐蚀电化学特征[J].钢铁研究学报,2001,23(9):25.
24 Zhao W M, Wang Y, Xue J, et al. EIS study of the corrosion failure process of steel coated by nickel base alloy[J]. Acta Metall Sin, 2005,41(2):178(in Chinese).
赵卫民,王勇,薛锦,等.镍基合金涂层包覆钢腐蚀失效过程的电化学阻抗谱研究[J].金属学报,2005,41(2):178.
25 Ma Y, Li Y, Wang F. The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment[J]. Mater Chem Phys,2008,112(3):844.
26 Antony H, Perrin S, Dillmann P, et al. Electrochemical study of indoor atmospheric corrosion layers formed on ancient iron artifacts[J]. Electrochim Acta,2007,52(27):7754.
[1] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[2] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[3] 吴彰钰, 余红发, 麻海燕, 冯滔滔, 达波. 基于可靠度的海洋浪溅区大掺量矿渣混凝土结构服役寿命预测[J]. 材料导报, 2019, 33(2): 264-270.
[4] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[5] 王中平, 杨浩宇, 赵亚婷, 徐玲琳. 不同养护温度下氯化钠对铝酸盐水泥水化的影响[J]. 材料导报, 2019, 33(14): 2343-2347.
[6] 梅友静, 徐金霞, 蒋林华, 陈平, 谭启平. 焙烧Mg-Al水滑石水泥浆涂层对钢筋氯离子腐蚀的缓蚀性能[J]. 材料导报, 2018, 32(22): 3941-3947.
[7] 黄全江,南君,王三反,李欣怡,邹信,张学敏. 苯磺酸甜菜碱表面改性阳离子交换膜[J]. 《材料导报》期刊社, 2018, 32(2): 203-206.
[8] 孙国文, 孙伟, 王彩辉. 现代混凝土传输行为与其微结构之间关系的研究方法及其进展[J]. 材料导报, 2018, 32(17): 3010-3022.
[9] 马宏强, 易成, 朱红光, 董作超, 陈宏宇, 王佳欣, 李德毅. 煤矸石集料混凝土抗压强度及耐久性能[J]. 《材料导报》期刊社, 2018, 32(14): 2390-2395.
[10] 王爱国,吕邦成,段 平,武悦悦,刘开伟. 层状双氢氧化物改善地聚物抗氯离子渗透性能研究[J]. 《材料导报》期刊社, 2018, 32(10): 1707-1710.
[11] 杨医博, 普永强, 严卫军, 郭文瑛, 王恒昌. 碱渣用作砂浆保水剂的试验研究*[J]. 《材料导报》期刊社, 2017, 31(20): 114-118.
[12] 陶德彪, 蒋林华, 金鸣, 白舒雅, 姜少博. 银/氯化银电极用于监测混凝土中氯离子含量的研究*[J]. 《材料导报》期刊社, 2017, 31(20): 101-106.
[13] 莫宗云, 高小建. 偏高岭土改性混凝土的耐久性研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 115-119.
[14] 史才军, 张留洋, 张健, 李宁, 欧志华. 碱激发材料氯离子传输性能测试方法及影响因素研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 95-100.
[15] 李冰洁, 江旭东, 潘春旭. 铜锡青铜合金腐蚀过程中的电化学与微结构特征研究*[J]. 《材料导报》期刊社, 2017, 31(11): 138-143.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed