Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 23080225-9    https://doi.org/10.11896/cldb.23080225
  特种工程材料 |
SiO2纳米颗粒在润滑领域中的研究与应用现状
陈进1, 李默涵2, 阮文琳3, 孙涛1, 刘晓英1,*
1 中国人民解放军陆军勤务学院,重庆 401331
2 重庆大学材料科学与工程学院,重庆 400044
3 重庆工商大学环境与资源学院,重庆 400067
Research and Application Status of SiO2 Nanoparticles in Lubrication Field
CHEN Jin1, LI Mohan2, RUAN Wenlin3, SUN Tao1, LIU Xiaoying1,*
1 Army Logistics Academy of PLA, Chongqing 401331, China
2 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
3 College of Environment and Resources, Chongqing Gongshang University, Chongqing 400067, China
下载:  全 文 ( PDF ) ( 25327KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,维修或更换摩擦损耗的材料给人们带来了巨大的经济损失,为了尽可能减少材料的损耗,设计并研发具有自润滑功能的材料成为研究热点。纳米颗粒因体积小、表面活性高等优势在摩擦学领域受到了广泛的关注。其中,SiO2纳米颗粒因高硬度和球形特征表现出了优异的摩擦学性能。SiO2纳米颗粒在自润滑领域中的应用可以分为液体润滑领域与固体润滑领域,液体领域指的是,当SiO2纳米颗粒作为添加剂加入到液体润滑剂中可以明显增强润滑液的润滑效果。固体领域指的是,当SiO2纳米颗粒与其他粒子复合制成固体自润滑复合材料并进一步应用到涂料/涂层设计中时,可以明显增强原材料的耐磨性能。现阶段,大多数研究人员主要主要针对以上两种应用领域中的一种进行详细阐述,这使得读者对SiO2纳米颗粒的实际应用缺乏全面性的认识与思考。
据此,本综述主要介绍了SiO2纳米颗粒的润滑机理与影响因素,详细论述了SiO2纳米颗粒在液体润滑、固体润滑领域的相关研究与应用现状,包括其在实际应用时所采用的相关表面处理与改性等手段。重点介绍了SiO2纳米颗粒在提高聚合物基复合自润滑材料中的作用和巨大应用潜力。最后,对现有SiO2纳米颗粒在自润滑领域中的应用与发展进行了陈述和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈进
李默涵
阮文琳
孙涛
刘晓英
关键词:  SiO2纳米颗粒  液体润滑  固体润滑    
Abstract: In recent years, the maintenance or replacement of materials caused by friction loss has brought huge economic losses. In order to reduce the loss of materials as much as possible, the design and development of materials with self-lubricating function has become a research hotspot. Because of its small size and high surface activity, nanoparticles have exhibited excellent tribological properties, and have received extensive attention in tribology field. Among them, SiO2 nanoparticles have excellent tribological properties due to their high hardness and sphericity. The application of SiO2 nanoparticles in the field of self-lubrication can be divided into liquid lubrication and solid lubrication. The liquid field refers to that when SiO2 nanoparticles are added to the liquid lubricant as an additive, the lubrication effect of the lubricant can be significantly enhanced. The solid field refers to the fact that the wear resistance of raw materials can be significantly enhanced when SiO2 nanoparticles are compounded with other particles to make solid self-lubricating composites and further applied to paint/coating designs. Currently, most researchers mainly elaborate on one of the above two types of application fields, which makes readers lack a comprehensive understanding and thinking about the practical application of SiO2 nanoparticles. Therefore, this review mainly introduces the lubrication mechanism and influencing factors of SiO2 nanoparticles, and discusses the relevant research and application status of SiO2 nanoparticles in the field of liquid lubrication and solid lubrication in detail, including the relevant surface treatment and modification means adopted in practical application. The role and great potential of SiO2 nanoparticles in improving polymer matrix self-lubricating materials in solid self-lubricating composites were introduced. Finally, the application and development of SiO2 nanoparticles in the field of self-lubrication are described and prospected.
Key words:  SiO2 nanoparticles    liquid lubrication    solid lubrication
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TB321  
基金资助: 国家自然科学基金 (52378217)
通讯作者:  *刘晓英,中国人民解放军陆军勤务学院副教授。2018年重庆大学材料科学与工程学院博士毕业,2022年加入中国人民解放军陆军勤务学院工作至今。目前主要从事土木工程材料、功能材料等交叉领域的研究工作。发表论文50余篇;获重庆市自然科学奖一等奖等省部级科技奖励5项;出版专著2部。 273839960@qq.com   
作者简介:  陈进,中国人民解放军陆军勤务学院教授、硕士研究生导师。1992年后勤工程学院工业与民用建筑专业本科毕业,毕业后到后勤工程学院工作至今,1999年后勤工程学院结构工程专业硕士毕业,2016年后勤工程学院土木工程专业博士毕业。目前主要从事土木工程混凝土结构抗震等方面的研究工作。发表论文60余篇,包括Composite Structures、Science and Engineering of Composite Materials、Advances in Materials Science and Engineering等;出版专著3部。
引用本文:    
陈进, 李默涵, 阮文琳, 孙涛, 刘晓英. SiO2纳米颗粒在润滑领域中的研究与应用现状[J]. 材料导报, 2024, 38(5): 23080225-9.
CHEN Jin, LI Mohan, RUAN Wenlin, SUN Tao, LIU Xiaoying. Research and Application Status of SiO2 Nanoparticles in Lubrication Field. Materials Reports, 2024, 38(5): 23080225-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080225  或          http://www.mater-rep.com/CN/Y2024/V38/I5/23080225
1 Rahman I A, Padavettan V. Journal of Nanomaterials, 2012, 2012, 132424.
2 Jiang X F, Tang X N, Tang L H, et al. Ceramics International, 2019. 45(6), 7673.
3 Stober W, Finkw A, Bohn E. Journal of Colloid and Interface Science, 1968, 26, 62.
4 Rong M Z , Zhang M Q, Ruan W H. Materials Science and Technology, 2013, 22(7), 787.
5 Li X H, Zhi C, Zhang Z J, et al. Applied Surface Science, 2006, 252(22), 7856.
6 Meng Fanming, Cheng Zhitao, Gong Jiayu, et al. Journal of Tribology, 2021, 41(5), 680(in Chinese).
孟凡明, 程志涛, 巩加玉, 等. 摩擦学学报, 2021, 41(5), 680.
7 Li C, Friedrich K. Tribology International, 2010, 43(12), 2355.
8 Esfe M H, Saedodin S , Toghraie D. International Communications in Heat and Mass Transfer, 2022, 130, 105771.
9 Esfe M H, Ardeshiri E M, Toghraie D. Tribology International, 2023, 179, 108153.
10 Haghighi E B, Utomo A T, Ghanbarpour M, et al. International Communications in Heat and Mass Transfer, 2015, 68, 32.
11 Huminic G, Huminic A. International Communications in Heat and Mass Transfer, 2016, 71, 118.
12 Hamzah M H, Sidik N A C, Ken T L, et al. International Journal of Heat and Mass Transfer, 2017, 115, 630.
13 Sarkar J, Ghosh P, Adil A. Renewable and Sustainable Energy Reviews, 2015, 43, 164.
14 Barbés B, Páramo R, Blanco E, et al. Journal of Thermal Analysis and Calorimetry, 2012, 111(2), 1615.
15 Esfe M H, Saedodin S. Journal of Thermal Analysis and Calorimetry, 2014, 119(2), 1205.
16 Murshed S M S, Leong K C, Yang C. International Journal of Thermal Sciences, 2008, 47(5), 560.
17 Esfe M H , Saedodin S, Mahian O, et al. Journal of Thermal Analysis and Calorimetry, 2014, 117(2), 675.
18 Esfe M H, Saedodin S. Experimental Thermal and Fluid Science, 2014, 55, 1.
19 Esfe M H, Saedodin S, Bahiraei M, et al. Journal of Thermal Analysis and Calorimetry, 2014, 118(1), 287.
20 Meng F M. Journal of Chongqing University, 2013, 36(2), 121(in Chinese).
孟凡明. 重庆大学学报, 2013, 36(2), 121.
21 Lv T, Xu X F, Yu A B, et al. Journal of Materials Processing Technology, 2021, 290, 116964.
22 Sharif M Z, Azmia W H, Mamat R, et al. International Communications in Heat and Mass Transfer, 2018, 92, 56.
23 张育新, 马小飞, 孙庆, 等. 中国专利, CN109054930B, 2021.
24 张育新, 姜德彬, 马小飞, 等. 中国专利, CN108977253B, 2021.
25 Tang Z L, Li S H. Current Opinion in Solid State and Materials Science, 2014, 18(3), 119.
26 Flores-Castañeda M, Camps E, Camacho-López M, et al. Journal of Alloys and Compounds, 2015, 643, 67.
27 Wu Y Y, Tsui W C, Liu T C. Wear, 2007, 262(7-8), 819.
28 Li X L, Ling Y L, Zhang G L, et al. Composites Part B: Engineering, 2020, 196, 108133.
29 Liu G, Li X, Qin B, et al. Tribology Letters, 2004, 17, 961.
30 Sia S Y, Bassyony E Z, Sarhan A A D. The International Journal of Advanced Manufacturing Technology, 2014, 71(5-8), 1277.
31 Xie H M, Jiang B, He J J, et al. Tribology International, 2016, 93, 63.
32 Mahara M, Singh Y. Materials Today: Proceedings, 2020, 28, 1412.
33 Zawawi N N M, Azmi W H, Ghazali M F. Wear, 2022, 492-493, 204238.
34 Asadi M, Asadi A. International Communications in Heat and Mass Transfer, 2016, 76, 41.
35 Chen S Y, Liang J, Wellbun D, et al. Journal of Northeastern University(Natural Science Edition), 2015, 36(3), 378(in Chinese).
陈岁元, 梁京, Wellbun Dan, 等. 东北大学学报(自然科学版), 2015, 36(3), 378.
36 Shen Y D, Lei W W, Tang W T, et al. Wear, 2022, 488-489, 204175.
37 Sankar E, Duraivelu K. Materials Today: Proceedings, 2022, 68, 2387.
38 Lee K, Hwang Y, Cheong S, et al. Tribology Letters, 2009, 35(2), 127.
39 Wang X, Lin Z B. Surface and Coatings Technology, 2021, 421, 127440.
40 Meera K M S, Sankar R M, Murali A, et al. Colloids Surf B Biointerfaces, 2012, 90, 204.
41 Li M, Su B, Zhou B, et al. Applied Surface Science, 2020, 508, 145187.
42 He S T, Liu B C. Applied Chemical Engineering, 2017, 46(4), 693(in Chinese).
何淑婷, 刘宝春. 应用化工, 2017, 46(4), 693.
43 Liu L, Zhou W. Tribology International, 2017, 114, 315.
44 Yang Y W, Wang N, Ren J F, et al. Materials Reports, 2019, 33(19), 3242(in Chinese).
杨亚文, 王娜, 任俊芳, 等. 材料导报, 2019, 33(19), 3242.
45 Zhou X, Qiu S L, Liu L X, et al. Composites Part B: Engineering, 2019, 167, 599.
46 Wang N, Wang H G, Ren J F, et al. Materials & Design, 2020, 195, 109069.
47 Jiang S, Wang S, Han X H, et al, Chemical Progress, 2023, 42(11), 5811(in Chinese).
姜帅, 王姗, 韩旭辉, 等, 化工进展, 2023, 42(11), 5811.
48 Qi J L, Lin J H, Jia L G, et al. Vacuum, 2015, 123, 136.
49 Wang J, Hu J J, Liu Y, et al. Chemical Engineering and Equipment, 2017(12), 258(in Chinese).
王静, 胡建军, 刘妤, 等. 化学工程与装备, 2017(12), 258.
50 Liu X S, Zhou X C, Yang C Z, et al. Wear, 2022, 490-491, 204191.
51 Zhang C, Xu J Y, Sun G D, et al. Wear, 2021, 470-471, 203621.
52 Liu Y Y, Yao Z P, Zhang P, et al. Tribology International, 2023, 189, 108980.
53 Han Y, Wang J H, Ge X H, et al. Polymer Bulletin, 2023, 36(10), 1302(in Chinese).
韩阳, 王金伙, 葛晓宏, 等. 高分子通报, 2023, 36(10), 1302.
54 Qi Y, The research on characteristics of tribological transfer films of PEEK/PTFE composites reinforced with nanoparticles. Ph.D. Thesis, Lanzhou University of Science and Technology, China, 2020(in Chinese).
祁渊. 纳米粒子增强PEEK/PTFE 复合材料摩擦转移膜特性研究. 博士学位论文, 兰州理工大学, 2020.
55 Liu T, Rhee S K, Lawson K L. Wear, 1980, 60, 1.
56 Ma J. Research on tribological property of mesoporous silica reinforced polyimide-matrix composites. Ph.D. Thesis, Yanshan University, China, 2018(in Chinese).
马建. 介孔二氧化硅改性聚酰亚胺基复合材料的摩擦学性能研究. 博士学位论文, 燕山大学, 2018.
57 Hu J F, Zhang L L, Sun Z. Chemical Management, 2022(16), 145(in Chinese).
胡剑飞, 张丽丽, 孙震. 化工管理, 2022(16), 145.
58 Liu S X, Nano-inorganic/organic silicc on hybrid UV curable coatings. Master's Thesis, Lanzhou University of Science and Technology, China, 2008(in Chinese)
刘诗鑫. 纳米无机/有机硅杂化UV涂料的研制. 硕士学位论文, 兰州理工大学, 2008.
59 Das G, Karak N. Polymer Degradation and Stability, 2009, 94(11), 1948.
60 Bakunin V N, Suslov A Y. Kuzmina G N, et al. Journal of Nanoparticle Research, 2003, 6, 273.
61 Wei M, Hu Q L, Zhang L M, et al. Materials Reports, 2014, 28(4), 95(in Chinese).
魏铭, 胡巧玲, 张联盟, 等, 材料导报, 2014, 28(4), 95.
62 Wu Y, Properties of polyimide/modified nanosilica hybrid films. Master's Thesis,Donghua University, China, 2009(in Chinese).
吴瑶. 聚酰亚胺/改性纳米二氧化硅复合薄膜的性能研究. 硕士学位论文, 东华大学, 2009.
63 Li H Y, Li S, Li F B, et al. Journal of Colloid and Interface Science, 2018, 528, 92.
64 Guo Q B, Lau K T, Rong M Z, et al. Wear, 2010, 269(1-2), 13.
65 Hwang C. Min Y. Seong Y J, et al. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110503.
66 Zhu Y Q, Li H X, Ji L, et al. Journal of Tribology, 2023, 43(9), 1083(in Chinese).
朱永琪, 李红轩, 吉利等, 摩擦学学报, 2022, 2023, 43(9), 1083.
[1] 霍丽霞, 苟世宁, 郭芳君, 贺颖, 冯凯, 周晖, 张凯锋. 溶胶-凝胶法制备聚酰胺-酰亚胺粘结MoS2/SiOx固体润滑涂层及其真空摩擦学性能研究[J]. 材料导报, 2022, 36(22): 22050078-5.
[2] 刘刚, 贾莉斯, 陈颖, 汪嘉城, 莫松平. SiO2-H2O纳米悬浮液的导热及其机理分析[J]. 材料导报, 2021, 35(Z1): 116-120.
[3] 翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed