Please wait a minute...
材料导报  2023, Vol. 37 Issue (24): 22060150-9    https://doi.org/10.11896/cldb.22060150
  无机非金属及其复合材料 |
偏转式抗侵彻防护技术研究现状
姜安邦, 李典, 李永清*, 侯海量
海军工程大学舰船与海洋学院,武汉 430033
Research Status of Deflected Anti-penetration Protection Technology
JIANG Anbang, LI Dian, LI Yongqing*, HOU Hailiang
Department of Naval Architecture and Ocean Engineering, Naval University of Engineering, Wuhan 430033, China
下载:  全 文 ( PDF ) ( 19094KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着弹体侵彻能力不断提升,传统“阻挡”的防护设计思想指导下的防护结构为达到防御目标,其质量与尺寸必将不断提高。基于弹体非理想侵彻及侵彻非均匀防护结构中的弹体偏转现象而提出的“偏转”防护思想,使得更加轻质高效的防护结构成为可能。本文以弹体侵彻过程中的各种偏转现象为主要研究对象,综述了偏转式抗侵彻防护技术的研究现状,主要内容包括弹体非理想侵彻过程和弹体侵彻非均匀防护结构过程中的偏转现象,非理想侵彻的过程分析以及影响弹体非理想侵彻过程中偏转程度的主要因素,非均质防护结构偏转弹体的机制,介绍了目前实际应用中较为典型的三种偏转式防护结构形式,并分析了其抗侵彻性能和存在的不足,最后针对目前偏转式抗侵彻防护技术研究现状提出了建议,为高效能偏转式防护结构研究提供参考依据与思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜安邦
李典
李永清
侯海量
关键词:  侵彻  偏转  防护结构  复合装甲    
Abstract: As the penetration capability of the projectile increase, the weight and size of protective structures guided by the traditional "blocking" protective design concept are bound to rise to achieve the defense objectives. The idea of ‘deflection’ protection based on non-ideal projectile penetration and projectile deflection in non-uniform penetration protection structures makes it possible to have lighter and more efficient protection structures. This paper reviews the current status of research on deflected anti-penetration protection technology by focusing on various deflection phenomena in projectile penetration. The main contents include the deflection phenomena in the process of non-ideal penetration of the projectile and the process of penetration of the projectile into the non-homogeneous protective structure, the analysis of the process of non-idealpenetration, and the main factors affecting the degree of deflection in the process of non-ideal penetration of the projectile, the mechanism of deflection of the projectile in the non-homogeneous protective structure, the introduction of the three typical forms of deflected protection structure in the current practical application, and the analysis of their anti-penetration performance and the existence of deficiencies. Finally, the current research status of deflected anti-penetration protection technology is proposed to provide a reference basis and ideas for developing high-performance deflected protection structures.
Key words:  penetration    deflection    protective structure    composite armor
发布日期:  2023-12-19
ZTFLH:  TJ410  
基金资助: 国家自然科学基金青年项目(52101378)
通讯作者:  *李永清,工学博士,海军工程大学舰船与海洋学院副教授、硕士研究生导师,2008 年毕业于海军工程大学舰船系。主要从事船用复合材料及其工程应用研究,发表论文60余篇。liyongqing@126.com   
作者简介:  姜安邦,2020年6月于合肥工业大学获得工学学士学位。现为海军工程大学舰船与海洋学院硕士研究生,在李永清副教授的指导下进行研究。目前主要的研究领域为船用复合材料及其工程应用。
引用本文:    
姜安邦, 李典, 李永清, 侯海量. 偏转式抗侵彻防护技术研究现状[J]. 材料导报, 2023, 37(24): 22060150-9.
JIANG Anbang, LI Dian, LI Yongqing, HOU Hailiang. Research Status of Deflected Anti-penetration Protection Technology. Materials Reports, 2023, 37(24): 22060150-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060150  或          http://www.mater-rep.com/CN/Y2023/V37/I24/22060150
1 Wang Y, Yuan X L, Lyu C. Acta Armamentarii, 2014, 35(12), 1998(in Chinese).
王云, 袁绪龙, 吕策.兵工学报, 2014, 35(12), 1998.
2 Gu G, Li X. Ship Science and Technology, 2020, 42(8), 32(in Chinese).
古刚, 李宣.舰船科学技术, 2020, 42(8), 32.
3 He Y F, Kong D R, Wang C M. Journal of Projectiles, Rockets, Missiles and Guidance, 2002, 22(4), 36(in Chinese).
何云峰, 孔德仁, 王昌明.弹箭与制导学报, 2002, 22(4), 36.
4 Goldsmith W. International Journal of Impact Engineering, 1999, 22(2), 95.
5 Sadanandan S, Hetherington J G. International Journal of Impact Engineering, 1997, 19(9), 811.
6 Zaid M, Paul B. Journal of the Franklin Institute, 1959, 268(1), 24.
7 Xu S X, Wu W G, Li X B, et al. Journal of Ballistics, 2010, 22(3), 58(in Chinese).
徐双喜, 吴卫国, 李晓彬, 等.弹道学报, 2010, 22(3), 58.
8 Gee D J, Littlefield D L. International Journal of Impact Engineering, 2001, 26(1), 211.
9 Liu T S. Research on ballistic deflection law of rigid projectile penetrating concrete. Master’s Thesis, Nanjing University of Science and Technology, China, 2014(in Chinese).
刘天宋. 刚性弹体侵彻混凝土弹道偏转规律研究. 硕士学位论文, 南京理工大学, 2014.
10 Feng J. Numerical simulation of attitude deflection of a projectile after non-ideal perforation of thin concrete target. Master’s Thesis, Beijing Institute of Technology, China, 2016(in Chinese).
冯杰. 弹体非正侵彻混凝土薄靶姿态偏转数值模拟研究. 硕士学位论文, 北京理工大学, 2016.
11 Zhang H. Research on deflection characteristics of projectile impacting metal plate. Master’s Thesis, Harbin Institute of Technology, China, 2019(in Chinese).
张航. 弹体撞击金属靶板偏转特性研究. 硕士学位论文, 哈尔滨工业大学, 2019.
12 Thomas L W, Kevin L P, et al. International Journal of Impact Engineering, 2001, 25(10), 993.
13 Schonberg W P, Taylor R A. Aiaa Journal, 1989, 27(5), 639.
14 Jena P K, Jagtap N, Kumar K S, et al. International Journal of Impact Engineering, 2010, 37(5), 489.
15 Hu D A. Chinese Journal of Applied Mechanics, 2012, 29(6), 752(in Chinese).
胡德安.应用力学学报, 2012, 29(6), 752.
16 Ye X J, Du Z H, Hu C H, et al. Chinese Journal of Explosives & Propellants, 2012, 35(4), 86(in Chinese).
叶小军, 杜忠华, 胡传辉, 等.火炸药学报, 2012, 35(4), 86.
17 Yang G, Liang C, Liu P, et al. EnGineering Mechanics, 2013, 30(9), 276(in Chinese).
杨刚, 梁超, 刘平, 等.工程力学, 2013, 30(9), 276.
18 Cagliostro D J, Mandell D A, Schwalbe L A, et al. International Journal of Impact Engineering, 1990, 10(1-4), 81.
19 Vayig Y, Rosenberg Z. International Journal of Impact Engineering, 2021, 148(2), 103748.
20 Burian W, Ochowski P, Gmitrzuk M, et al. International Journal of Impact Engineering, 2018, 126, 27.
21 Ren H Q, Mu C M, Liu R C. Penetration effect and engineering protection of precision guided weapons, Science Press, China, 2016(in Chinese).
任辉启, 穆朝民, 刘瑞朝.精确制导武器侵彻效应与工程防护, 科学出版社, 2016.
22 Wang M Y, Liu X B, Qian Q H. Acta Armamentarii, 2002, 23(1), 14(in Chinese).
王明洋, 刘小斌, 钱七虎.兵工学报, 2002, 23(1), 14.
23 Guo Z K, Chen W X, Yuan Z C, et al. Journal of PLA University of Science and Technology: Natural Science Edition, 2007, 8(5), 505(in Chinese).
郭志昆, 陈万祥, 袁正如, 等.解放军理工大学学报:自然科学版, 2007, 8(5), 505.
24 Chen W X, Guo Z K. Explosion and Shock Waves, 2010, 30(1), 51(in Chinese).
陈万祥, 郭志昆.爆炸与冲击, 2010, 30(1), 51.
25 Chen W X, Guo Z K, Wu H, et al. Journal of Ballistics, 2011, 23(4), 66(in Chinese).
陈万祥, 郭志昆, 吴昊, 等, 弹道学报, 2011, 23(4), 66.
26 Lyu Z J, Wang Y H, Yuan J H, et al. Journal of PLA University of Science and Technology: Natural Science Edition, 2010, 11(5), 561(in Chinese).
吕振坚, 王耀华, 袁建虎, 等.解放军理工大学学报:自然科学版, 2010, 11(5), 561.
27 Chen X W, Fan S C, Li Q M. International Journal of Impact Engineering, 2004, 30(6), 617.
28 Ma Z F, Duan Z P, Ou Z C, et al. Acta Armamentarii, 2015, 36(S1), 248(in Chinese).
马兆芳, 段卓平, 欧卓成, 等.兵工学报, 2015, 36(S1), 248.
29 Chen X, Li Q, Fan S. Theoretical and Applied Mechanics Letters, 2006, 22(4), 10.
30 Chen W X, Guo Z K, Qian Q H, et al. Journal of Central South University:English Version, 2012, 19(6), 1.
31 Wang M, Rong X, Qian Q, et al. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11), 1811.
32 Hu Y T, Lu F Y, Jiang B H, et al. Applied Mechanics & Materials, 2013, 2212, 275.
33 Yan L, Ma A, Huang F. International Journal of Impact Engineering, 2009, 36(3), 438.
34 Ni C Y, Jin F, Lu T, et al. Theoretical and Applied Mechanics Letters, 2014, 4(2), 8.
35 Niu Z K, Yao Y, Deng Y J, et al. Journal of Southwest University of Science and Technology, 2017, 32(3), 40(in Chinese).
牛振坤, 姚勇, 邓勇军, 等.西南科技大学学报, 2017, 32(3), 40.
36 Chen J, Ye X J. Advanced Materials Research, 2014, 3326, 989.
37 Ma A E, Huang F L. Journal of Beijing Institute of Technology, 2007, 27(6), 482(in Chinese).
马爱娥, 黄风雷.北京理工大学学报, 2007, 27(6), 482.
38 Hou K Y, Li K D, Zhang X W, et al. Journal of Ordnance Equipment Engineering, 2017, 4(4), 65(in Chinese).
侯旷怡, 李可达, 张新伟, 等.兵器装备工程学报, 2017, 4(4), 65.
39 Liu R Z, He M C, Ren H Q, et al. Journal of Beijing Institute of Technology, 2003, 23(1), 26(in Chinese).
刘瑞朝, 何满潮, 任辉启, 等.北京理工大学学报, 2003, 23(1), 26.
40 Wu P L, Li P F, Dong P, et al. Chinese Journal of Explosives & Propellants, 2018, 41(2), 104(in Chinese).
吴普磊, 李鹏飞, 董平, 等.火炸药学报, 2018, 41(2), 104.
41 Gao X D, Li Q M. Acta Armamentarii, 2014, 35(S2), 33(in Chinese).
高旭东, 李庆明. 兵工学报, 2014, 35(S2), 33.
42 Shin J G, Park K, Kim G I. Journal of Mechanical Science & Technology, 2018, 32(12), 5767.
43 Xu S Y, Guan Y P, Liu L L, et al. Journal of Nanjing University of Aeronautics and Astronautics, 2017, 49(1), 67(in Chinese).
许善迎, 关玉璞, 刘璐璐, 等.南京航空航天大学学报, 2017, 49(1), 67.
44 Deng Y F, Yuan J J, Xu J X. Acta Materiae Compositae Sinica, 2018, 35(4) , 843(in Chinese).
邓云飞, 袁家俊, 徐建新.复合材料学报, 2018, 35(4), 843.
45 Xie W B, Zhang W, Jiang X W. Explosion and Shock Waves, 2018, 38(3), 647(in Chinese).
谢文波, 张伟, 姜雄文.爆炸与冲击, 2018, 38(3), 647.
46 Xiong F, Shi Q, Zhang C, et al. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(1), 61(in Chinese).
熊飞, 石全, 张成, 等.弹箭与制导学报, 2015, 35(1), 61.
47 Ge C, Dong Y X, Lu Z C, et al. Acta Armamentarii, 2015, 36(2), 255(in Chinese).
葛超, 董永香, 陆志超, 等.兵工学报, 2015, 36(2), 255.
48 Deng J J. Study on the penetration mechanism of grooved-nose projectile impact to concrete target. Ph.D. Thesis, Nanjing University of Science & Technology, China, 2018(in Chinese).
邓佳杰.头部刻槽弹体对混凝土靶侵彻机理研究. 博士学位论文, 南京理工大学, 2018.
49 Du H C. Research on ballistic characteristics of asymmetrical grooved projectile head penetrating a typical target obliquely. Master’s Thesis, Nanjing University of Science & Technology, China, 2021(in Chinese).
杜华池.头部非对称刻槽弹体斜侵彻典型靶体弹道特性研究.硕士学位论文, 南京理工大学, 2021.
50 Wang K H, Duan J, Li M, et al. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(3), 50(in Chinese).
王可慧, 段建, 李明, 等.弹箭与制导学报, 2015, 35(3), 50.
51 Wu H, Wang Y, Huang F. International Journal of Modern Physics B, 2008, 22, 1087.
52 Li D W, Liu Y P, Wang X F, et al. Journal of Ordnance Equipment Engineering, 2021, 42(9), 40(in Chinese).
李东伟, 刘俞平, 王筱锋, 等.兵器装备工程学报, 2021, 42(9), 40.
53 Wei H, Zhang X, Liu C, et al. International Journal of Impact Engineering, 2021, 148, 103745.
54 Duan Z P, Li S R, Ma Z F, et al. Explosion and Shock Waves, 2019, 39(6), 69(in Chinese).
段卓平, 李淑睿, 马兆芳, 等.爆炸与冲击, 2019, 39(6), 69.
55 Zhou D W, Stronge W J. International Journal of Impact Engineering, 2008, 35(11), 1339.
56 Du H C, Zhang X F, Liu C, et al. Acta Armamentarii, 2021, 42(6), 1204(in Chinese).
杜华池, 张先锋, 刘闯, 等.兵工学报, 2021, 42(6), 1204.
57 Ma Z F, Duan Z P, Ou Z C, et al. Journal of Beijing Institute of Techno-logy, 2016, 36(10), 1001(in Chinese).
马兆芳, 段卓平, 欧卓成, 等.北京理工大学学报, 2016, 36(10), 1001.
58 Huang Q, Zhou T, Bai Y, et al. Acta Armamentarii, 2016, 37(S2), 256(in Chinese).
黄岐, 周彤, 白洋, 等.兵工学报, 2016, 37(S2), 256.
59 Jo J H, Lee Y S, et al. International Journal of Modern Physics: Confe-rence Series, 2011, 6, 443.
60 Segletes S B. International Journal of Impact Engineering, 2006, 32(9), 1403.
61 Chen X W, Li Q M. International Journal of Impact Engineering, 2002, 27(6), 619.
62 Duan J, Wang K H, Zhou G, et al. Acta Armamentarii, 2016, 37(8), 1395(in Chinese).
段建, 王可慧, 周刚, 等.兵工学报, 2016, 37(8), 1395.
63 Xue J F, Shen P H, Wang X M, Chinese Journal of Explosives & Propellants, 2016, 39(2), 54(in Chinese).
薛建锋, 沈培辉, 王晓鸣.火炸药学报, 2016, 39(2), 54.
64 Murali V, Law M G, Naik S D. American Institute of Physics, 2012, 1482(1), 58.
65 Lee W, Lee H J, Shin H. Journal of Physics D Applied Physics, 2002, 35(20), 2676.
66 Rosenberg Z, Surujon Z, International Journal of Impact Engineering, 2005, 31(3), 221.
67 Chen W, Zhang Y, Guo Z, et al. International Journal of Structural Stability & Dynamics, 2017, 17(8), 1750080.
68 Cui T, Qin Q, Yan W, et al. Acta Mechanica Solida Sinica, 2021, 34(1), 12.
69 Yami T, David B M, Gideon R. E.U. patent, EP0209221, 1987.
70 Wiśniewski A, ochowski P. Problemy Techniki Uzbrojenia, 2013, 42(125), 17.
71 Radisavljevic I, Balos S, Nikacevic M, et al. Materials & Design, 2013, 49, 81.
72 Auyer R A, Buccellato R J, Gidynski A J, et al. U. S. patent, EP5014593, 1991.
73 Fras T, Murzyn A, Pawlowski P. International Journal of Impact Engineering, 2017, 103, 241.
74 Kl N, Bedir S, Erdik A, et al. Materials & Design, 2014, 63, 427.
75 Norris W J, Smith C A. U. S. patent, WO2010036411 A2, 2010.
76 Peng J X, Cui T N, Jin Y X, et al. Chinese Journal of Applied Mecha-nics, 2021, 38(3), 893(in Chinese).
彭吉祥, 崔天宁, 金永喜, 等.应用力学学报, 2021, 38(3), 893.
77 Richard P, Cheyrezy M. Cement and Concrete Research, 1995, 25(7), 1501.
78 Shi P, Deng G Q, Liu R C, et al. Protection Engineering, 2004, 26(1), 13(in Chinese).
施鹏, 邓国强, 刘瑞朝, 等.防护工程, 2004, 26(1), 13.
79 Thorton C. Transaction of Asme Journal of Applied Mechanics, 1997, 64(2), 383.
80 Zhou B K, Chen X X, Tang D G, et al. Explosion and Shock Waves, 2003, 23(2), 173(in Chinese).
周布奎, 陈向欣, 唐德高, 等.爆炸与冲击, 2003, 23(2), 173.
81 Wang Q, Chen Z, Chen Z. Materials & Design, 2013, 46, 634.
82 Moore I D T, Sane A, Lennartz J, et al. U. S. patent, 7866248, 2009.
83 Morka A, Jackowska B, Niezgoda T. Journal of KONES, 2009, 16, 539.
84 Li J C, Chen X W. International Journal of Impact Engineering, 2017, 106, 53.
85 Shi P, Liu R C, Deng G Q, et al. In: proceedings of the 12th National Structural Engineering Academic Conference Proceedings. Chongqing, 2003, pp 383(in Chinese).
施鹏, 刘瑞朝, 邓国强, 等. 第十二届全国结构工程学术会议. 重庆, 2003, pp 383.
86 Stanislawek S, Morka A, Niezgoda T. Bulletin of the Polish Academy of Sciences Technical Sciences, 2015, 63(4), 843.
87 Cohen M, Etzion K K. U. S. patent, 6203908, 2001
88 Liu W, Chen Z, Cheng X, et al. Composites Part B: Engineering, 2016, 84, 33.
89 Chen J, Zeng Y, Liang X, et al. Processes, 2022, 10(6), 1056.
90 Aydin M, Soydemir M. Ceramics International, 2021, 47(8), 11628.
91 Shao R, Wu C, Su Y, et al. Ceramics International, 2019, 45(6), 7961.
[1] 程平, 彭勇, 汪馗, 姚松, 刘志祥. 3D打印连续苎麻纤维增强聚乳酸复合材料的准静态侵彻性能[J]. 材料导报, 2023, 37(1): 22010088-6.
[2] 肖颍杰, 石少卿, 刘盈丰, 陈首, 廖瑜. 聚脲钢板复合层抗枪弹侵彻性能研究[J]. 材料导报, 2022, 36(23): 22010187-7.
[3] 郑成燕, 张典堂, 梁燕民, 钱坤. 织物/聚脲柔性复合材料抗爆性能研究进展[J]. 材料导报, 2021, 35(23): 23205-23211.
[4] 王东哲, 秦溶蔓, 孙娜, 杜明远, 腾凌虹, 曹伟伟, 朱波. 陶瓷/纤维复合装甲抗弹丸侵彻性能的试验与数值模拟研究[J]. 材料导报, 2021, 35(18): 18216-18221.
[5] 何秋霖, 石少卿, 崔廉明, 孙建虎, 陈自鹏. 轻质材料构筑的蜂窝防护结构抗爆性能试验与数值模拟研究[J]. 材料导报, 2020, 34(24): 24023-24028.
[6] 秦溶蔓, 朱波, 乔琨, 袁小敏. 陶瓷/纤维复合材料层间混杂结构对装甲板抗侵彻性能的影响[J]. 材料导报, 2020, 34(18): 18183-18187.
[7] 尹德军, 郑坚, 熊超, 殷军辉, 刘云峰. 基于弹丸爆炸毁伤效应的复合材料与结构研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 815-721.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed