Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 21070242-6    https://doi.org/10.11896/cldb.21070242
  高分子与聚合物基复合材料 |
原位接枝纳米炭黑水包油型破乳剂制备与性能评价
王环江1, 杨启亮1, 张雨晨1, 徐磊1, 刘娟2, 任嗣利2,*
1 贵州民族大学化学工程学院,贵州省低维材料与环境生态治理特色重点实验室, 贵阳 550025
2 江西理工大学资源与环境工程学院,江西省矿业工程重点实验室,江西 赣州 341000
Synthesis and Performance Evaluation of In-situ Grafted Carbon Black Nanoparticle as Demulsifier for Treating Crude Oil-in-water Emulsions
WANG Huanjiang1, YANG Qiliang1, ZHANG Yuchen1, XU Lei1, LIU Juan2, REN Sili2,*
1 School of Chemical Engineering, Guizhou Minzu University, Guizhou Provincial Key Laboratory of Low Dimensional Materials and Environmental and Ecological Restorations, Guiyang 550025, China
2 School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Key Laboratory of Mining Engineering of Jiangxi Province, Ganzhou 341000,Jiangxi, China
下载:  全 文 ( PDF ) ( 21800KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用无溶剂法对工业炭黑进行原位接枝改性,制备了水分散性良好的两亲性胺基化炭黑纳米颗粒(CB-DEA)。采用红外光谱(IR)、X射线光电子能谱(XPS)、原子力显微镜(AFM)和场发射高分辨投射电镜(HRTEM)对CB-DEA结构进行表征。瓶试法破乳实验结果表明,室温下CB-EDA在最佳破乳剂剂量下能实现含油量为10.0% (质量分数)的模拟原油采出液(pH=8.9)的快速破乳,破乳效率高达 99.90%以上,脱出水中的含油量低至53.45 mg/L。进一步的研究表明,CB-EDA对高pH值采出液的破乳效果和破乳速率明显高于氧化石墨烯(GO)、还原氧化石墨烯(rGO)和羟基化炭黑(CB-PVA)。ζ电位和破乳机理实验表明,CB-EDA加入油水乳状液后不仅能快速迁移到油/水界面,通过与形成油水界面膜的主要成分沥青质产生强的π-π/n-π相互作用破坏油水界面膜;同时ζ电位为正有利于破乳剂压缩分散油滴表面双电层,加速分散油滴絮凝聚集,促使油水乳液快速分离。本研究克服了两亲性纳米碳基破乳剂的缺陷,发展的CB-EDA有效提高了碳基破乳剂的破乳效率和普适性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王环江
杨启亮
张雨晨
徐磊
刘娟
任嗣利
关键词:  破乳剂  两亲性碳基材料  胺基化碳黑  原油乳状液    
Abstract: The good aqueous suspensions of amphiphilic aminated carbon black nanoparticles (CB-EDA) are prepared via situ grafted methodby industrial carbon black for treating 10.0wt% crude oil in water emulsions (pH=8.9). The structure and morphology characterization of CB-EDA were explored by Fourier transform infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), Atomic force microscopy (AFM), and high-resolution transmission electron microscopy (TEM). Encouragingly, the demulsification tests indicated that the residual oil in separated water samples was as low as 53.45 mg/L, corresponding to a demulsification effect of over 99.90% at optimum dosage. Besides, the CB-EDA, graphene oxide (GO), reduced graphene oxide (rGO), and hydroxylated carbon black (CB-PVA) for detachment oil from the crude oil-in-water emulsion under alkaline conditions are studied. The zeta potential measurement and mechanism analysis results revealed that CB-EDA has better demulsification efficiency and universality than other nanocarbon-based demulsifiers at ambient temperature. As an amphiphilic nanocarbon-based material, the CB-EDA prefer to migrate to the oil/water interface after add into emulsions adding once CB-EDA is reached at the oil/water interface which can displace the emulsified molecules of the emulsion by strong π-π/n-π interaction. More importantly, the zeta potentials are CB-EDA is positive, which can compress double electric layer of dispersed oil droplets to promote emulsified oil droplets accumulation. In the current work, we overcame the disadvantages of the nanocarbon-based demulsifiers, effectively improved their efficiency and universality, and developed a promising CB-EDA demulsifier for the separation of O/W emulsion.
Key words:  demulsifiers    amphiphilic nanocarbon-based materials    aminated carbon black    crude oil emulsions
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  TE39  
基金资助: 国家自然科学基金(22262008;22078138);贵州省自然科学基金(ZK[2021]051; [2019]1158)
通讯作者:  * 任嗣利,江西理工大学“清江学者”特聘教授。2004年3月于中科院兰州化学物理研究所,获理学博士学位。目前主要从事矿物工程与物质分离及环境科学与工程相关领域研究工作,在油砂矿分离技术、水污染控制以及表面/界面行为与调控等方面具有较为深厚的研究基础。发表研究论文50余篇,期中SCI论文30余篇;授权中国发明专利1项。slren@jxust.edu.cn   
作者简介:  王环江,贵州民族大学副教授。2008年毕业于兰州城市学院,2013年毕业于西北师范大学物理化学专业,获理学硕士学位。2017年毕业于中国科学院兰州化学物理研究所物理化学专业,获理学博士学位。主持国家自然科学基金1项,贵州省级基金项目2项、教育厅项目1项,发表学术论文10余篇。主要研究方向为胶体与界面化学。
引用本文:    
王环江, 杨启亮, 张雨晨, 徐磊, 刘娟, 任嗣利. 原位接枝纳米炭黑水包油型破乳剂制备与性能评价[J]. 材料导报, 2023, 37(4): 21070242-6.
WANG Huanjiang, YANG Qiliang, ZHANG Yuchen, XU Lei, LIU Juan, REN Sili. Synthesis and Performance Evaluation of In-situ Grafted Carbon Black Nanoparticle as Demulsifier for Treating Crude Oil-in-water Emulsions. Materials Reports, 2023, 37(4): 21070242-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070242  或          http://www.mater-rep.com/CN/Y2023/V37/I4/21070242
1 Cui C Z, Li S, Yang Y, et al. Acta Petrolei Sinica, 2018, 39(10), 1155 (in Chinese).
崔传智, 李松, 杨勇, 等. 石油学报, 2018, 39(10), 1155.
2 Hu W R, Bao J W. Journal of China University of Petroleum (Natural Science Edition), 2018, 42(4), 1 (in Chinese Chinese).
胡文瑞, 鲍敬伟. 中国石油大学学报(自然科学版), 2018, 42(4), 1.
3 Zhang L Z, Zhao S Q, Shi Q, et al. Scientia Sinica Chimica, 2020, 50(2), 192 (in Chinese).
张霖宙, 赵锁奇, 史权, 等. 中国科学:化学, 2020, 50(2), 192.
4 Bi Y G, Xu Z J, Jia X R, et al. Materials Reports A:Review Papers, 2017, 31(7), 63 (in Chinese).
毕研刚, 许泽军, 贾欣茹, 等. 材料导报:综述篇, 2017, 31(7), 63.
5 Saad M A, Kamil M, Abdurahman N H, et al. Processes, 2019, 7(7), 470.
6 Zolfaghari R, Fakhrulrazi A, Abdullah L C, et al. Separation & Purification Technology, 2016, 170, 377.
7 Liu J, Zhao Y B, Hu B, et al. Chemical Industry and Engineering Progress, 2013, 32(4), 891 (in Chinese).
刘娟, 赵亚博, 胡斌, 等. 化工进展, 2013, 32(4), 891.
8 Feng X H, Xu Z H, Masliyah J H. Energy & Fuels, 2009, 23(1), 451.
9 Hazrati N, Beigi A A M, Abdouss M, et al. Fuel, 2018, 229, 126.
10 Ezzat A O, Atta A M, et al. Energy & Fuels, 2018, 32(1), 214.
11 Ismail A I, Atta A M, El-Newehy M, et al. Polymers, 2020, 12(6), 1273.
12 Guzmán-Lucero D, Flores P, Rojo T, et al. Energy & Fuels, 2010, 24(6), 3610.
13 Lei R, Wang J R, Zhao S, et al. Journal of Chemical Industry and Engineering(China), 2020, 72(2), 1191, (in Chinese).
雷然, 王嘉柔, 赵颂, 等. 化工学报, 2020, 72(2), 1191.
14 Zheng X M, Fan R Y, Xiao Q R, et al. Journal of Chemical Industry and Engineering(China), 2016, 67(5), 1957 (in Chinese).
郑细鸣, 范荣玉, 肖启瑞, 等. 化工学报, 2016, 67(5), 1957.
15 Xu H, Jia W, Ren S, et al. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 492.
16 Liu J, Li X C, Jia W H, et al. Energy & Fuels, 2015, 29(7), 4644.
17 Wang H J, Liu J, Xu H Y, et al. RSC Advances, 2016, 6, 106297.
18 Liu J, Wang H J, Li X C, et al. Fuel, 2016, 189, 79.
19 Liu J, Li X C, Jia W H, et al. Journal of Dispersion Science and Technology, 2016, 37, 1294.
20 Wang H J, Xu H Y, Jia W H, et al. Journal of Dispersion Science & Technology, 2017, 4, 497.
21 Fan G T, Lyu R L, Gao X, et al. Journal of Applied Polymer Science, 2018, 135(7), 45867.
22 Li H Y, Chen H Z, Sun J Z, et al. Macromolecular Rapid Communications, 2003, 24, 715.
23 Longhi M, Bertacche V, Bianchi C L, et al. Chemistry of Materials, 2006, 18(17), 4130.
24 Lima M C F S, Sthefany Z A, Hélio R, et al. Carbon, 2016, 109, 290.
25 Teng C C, Ma C C M, Lu C H, et al. Carbon, 2011, 49(15), 5107.
26 Strzemiecka B, Voelkel A, Donate-Robles J, et al. Applied Surface Science, 2014, 316, 315.
27 Silva W M, Ribeiro H, Seara L M, et al. Journal of the Brazilian Chemical Society, 2012, 23(6), 1078.
28 Gao S, Moran K, Xu Z H, et al. Energy & Fuels, 2009, 23(5), 2606.
29 Umar A A, Saaid I M, Sulaimon A A, et al. Journal of Petroleum Science & Engineering, 2018, 165, 673.
30 Wang, H J, Xu, H Y, Jia, W H, et al. Energy & Fuels, 2017, 49(3), 2488.
[1] 毕研刚, 许泽军, 贾欣茹, 李雁, 李武松, 刘聪聪. 树枝状和超支化聚酰胺-胺在我国油田化学的应用进展*[J]. 《材料导报》期刊社, 2017, 31(13): 63-68.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed