Please wait a minute...
材料导报  2021, Vol. 35 Issue (13): 13148-13159    https://doi.org/10.11896/cldb.20060142
  金属与金属基复合材料 |
Heusler合金磁性纳米线的制备方法及磁性的研究进展
刘磊1,2, 闫泽1,2, 李应琛1,2, 许云丽1,2,*, 潘礼庆1,2
1 三峡大学理学院&磁电子与纳磁探测研究所,宜昌 443002
2 三峡大学湖北省弱磁探测工程技术研究中心,宜昌 443002
Research Progress on Preparation Methods and Magnetic Properties of Heusler Alloy Magnetic Nanowires
LIU Lei1,2, YAN Ze1,2, LI Yingchen1,2, XU Yunli1,2,*, PAN Liqing1,2
1 Research Institute for Magnetoelectronics & Weak Magnetic-field Detection, College of Science, China Three Gorges University, Yichang 443002, China
2 Hubei Engineering Research Center of Weak Magnetic-field Detection,China Three Gorges University, Yichang 443002, China
下载:  全 文 ( PDF ) ( 8605KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磁性纳米线发展至今,已在高密度垂直磁性存储器、传感器、生物医学、催化剂等领域得到广泛应用。其中,Heusler合金磁性纳米线(Heusler alloy magnetic nanowires,HAMNWs)因其优异的性能备受关注。然而,目前HAMNWs制备工艺尚未成熟,存在组分偏差、结构无序、形貌不均等问题,阻碍了其基本物理性质的研究和功能器件的应用设计。当前已有的HAMNWs制备方法包括扩散驱动退火法、模板辅助法、化学合成退火法、分子束外延法、静电纺丝法、电沉积法等,这些方法各有其优势和缺陷。其中,SBA-15模板辅助的化学合成退火法制备的HAMNWs组分精确、结构高度有序,但该模板与AAO模板相比,孔道均一性相对较差,导致纳米线形貌均一性和有序性较弱;分子束外延法可以实现纳米线以原子级精度生长,然而,其制备设备昂贵、操作复杂,难以推广普及;扩散驱动退火法主要针对二元核壳型HAMNWs,而对于三元HAMNWs,其适用难度较大;静电纺丝法对组分和结构的控制较好,但对纳米线的形貌均一性控制较弱,整体呈纤维状;电沉积法制备的纳米线形貌均一可控,但对于含有难共沉积元素的合金纳米线,其组分和结构控制都较差。 本文综述了HAMNWs的制备方法,详细对比了各种方法的优缺点;重点针对直流、脉冲、交流电沉积法制备过程中不同的生长机理进行了讨论,并在此基础上分析了纳米线生长过程中各种因素的影响与调控。同时还对纳米线的基本物理性质和磁性参数进行了归纳总结,最后对未来HAMNWs的制备及应用发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘磊
闫泽
李应琛
许云丽
潘礼庆
关键词:  Heusler合金  铁磁纳米线  磁学性能    
Abstract: Up to now, magnetic nanowires have been widely used in high density vertical magnetic memory, sensors, biomedicine, catalysts and other fields. Among them, Heusler alloy magnetic nanowires (HAMNWs) have attracted lots of attentions because of their excellent performance. However, at present, the preparation process of HAMNWs is immature, and problems of component deviation, disordered structure and uneven morphology do exist, which hinders the further research of HAMNWs in the basic physical properties and functional device design. Currently, the methods of preparing HAMNWs include diffusion driven annealing, template-assisted, chemical synthesis annealing, molecular beam epitaxy, electrospinning, electrodeposition and so on. These methods have their own advantages and disadvantages. Among them, HAMNWs prepared by the chemical synthesis annealing method assisted with SBA-15 template have accurate composition and highly ordered structure. However, compared with AAO template, the uniformity of the channel of SBA-15 template are relatively weak, resulting in uniformity and orderliness of nanowires morphology is relatively weak. Molecular beam epitaxy can achieve the growth of nanowires in atomic precision, but it has the problems of expensive preparation equipment and complicated operation, which make it difficult to popularize. Diffusion-driven annealing method is mainly for binary core-shell HAMNWs, for ternary HAMNWs, this method is more difficult to apply. Electrospinning method can control the composition and structure of nanowire better, but the control of morphology is weak, cause the nanowires have a fiber-like shape. The nanowires prepared by the electrodeposition method have uniform morphology. Yet, as for nanowires containing elements which are difficult to co-deposition, the composition and structure are inferior. This article reviews the preparation methods of HAMNWs and compares the advantages and disadvantages of various methods in detail. Focus on the different growth mechanisms in different preparation process including direct current, pulse current and alternating current electrodeposition methods. And on this basis, we analyze the influence of various factors on the growth process of nanowires. At the same time, the basic physical properties and magnetic parameters of the nanowires are summarized. Finally, the preparation and application of HAMNWs in the future are prospected.
Key words:  Heusler alloy    ferromagnetic nanowires    magnetic property
               出版日期:  2021-07-10      发布日期:  2021-07-14
ZTFLH:  O482.54  
作者简介:  刘磊,2018年6月毕业于重庆三峡学院电子与信息工程学院,获得工学学士学位。现为三峡大学理学院硕士研究生,在潘礼庆教授的指导下进行研究。目前主要研究领域为低维磁性材料中的Heusler合金磁性纳米线。
许云丽,博士,讲师,三峡大学理学院教师。1999.9—2003.6就读于华中师范大学物理系电子信息科学与技术专业,获理学学士学位;2006.9—2009.6就读于三峡大学电气信息学院控制理论与控制工程专业,获工学硕士学位。2014.9—2018.6 就读于北京科技大学材料学院,获工学博士学位。近年来,主要从事铁磁性哈斯勒合金的磁电性质研究、铁磁性纳米合金的研究、弱磁检测技术以及半导体磁电阻器件研发等方面的科研工作。主持或参与多项国家级自然科学基金项目,申报国家专利多项。在国内外著名杂志Physical Chemistry Chemical PhysicsJournal of Alloys and CompoundsAIP AdvancesRare Metals等发表学术论文多篇。
引用本文:    
刘磊, 闫泽, 李应琛, 许云丽, 潘礼庆. Heusler合金磁性纳米线的制备方法及磁性的研究进展[J]. 材料导报, 2021, 35(13): 13148-13159.
LIU Lei, YAN Ze, LI Yingchen, XU Yunli, PAN Liqing. Research Progress on Preparation Methods and Magnetic Properties of Heusler Alloy Magnetic Nanowires. Materials Reports, 2021, 35(13): 13148-13159.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060142  或          http://www.mater-rep.com/CN/Y2021/V35/I13/13148
1 Groot R A D, Mueller F M, Engen P G V, et al. Physical Review Letters,1983,50(25),2024.
2 Zhang Q, Liu C H, Liu X, et al. ACS Nano,2018,12(3),2634.
3 Kumar A, Fhler S, Schlrb H, et al. Physical Review B,2006,73(6),64421.
4 Parkin S S P, Hayashi M, Thomas L. Science,2008,320(5873),190.
5 Mcgary P D, An L T, Zou J, et al. Journal of Applied Physics,2006,99(8),8B310.
6 Park J J, Reddy K S M, Stadler B J H, et al. Ieee Sensors Journal,2016,17(7),2015.
7 Ivanov Y P, Alfadhel A, Alnassar M, et al. Scientific Reports,2016,6,24189.
8 Chen X Z, Hoop M, Shamsudhin N, et al. Advanced Materials,2017,29(8),1605458.
9 Kojima T, Kameoka S, Tsai A P. Science and Technology of Advanced Materials,2019,20(1),445.
10 Schlrb H, Haehnel V, Khatri M S, et al. Physica Status Solidi B-Basic Solid State Physics,2010,247(10),2364.
11 Wang J G, Tian M L, Mallouk T E, et al. Journal of Physical Chemistry B,2004,108(3),841.
12 Huang X H, Li L, Luo X, et al. Journal of Physical Chemistry C,2008,112(5),1468.
13 Pan H, Liu B H, Yi J B, et al. Journal of Physical Chemistry B,2005,109(8),3094.
14 Skoric L, Sanz Hernández D, Meng F F, et al. Nano Letters,2020,20(1),184.
15 Wang Y C, Xu J Y, Ren P Y, et al. Physical Chemistry Chemical Phy-sics,2013,15(8),2912.
16 Nasirpouri F, Southern P, Ghorbani M, et al. Journal of Magnetism and Magnetic Materials,2007,308(1),35.
17 Seo K, Bagkar N, Kim S I, et al. Nano Letters,2010,10(9),3643.
18 Simon P, Wolf D, Wang C, et al. Nano Letters,2015,16(1),114.
19 Xu Y L, Yang D C, Luo Z C, et al. AIP Advances,2018,8(5),55107.
20 Laskowski A, Laskowska M, Vila N, et al. Molecules,2019,24(13),2395.
21 Sayari A, Han B H, Yang Y. Journal of the American Chemical Society,2004,126(44),14348.
22 Zhu L W, Wang J G, Zhao P P, et al. Journal of Fuel Chemistry and Technology,2017,45(6),651.
23 Dubrovskii V G, Sibirev N V, Cirlin G E, et al. Physical Review E,2006,73(2),21603.
24 Hilse M, Herfort J, Jenichen B, et al. Nano Letters,2013,13(12),6203.
25 Jenichenn B, Hilse M, Herfort J, et al. Journal of Crystal Growth,2014,410,1.
26 Jenichen B, Hilse M, Herfort J, et al. Journal of Crystal Growth,2015,427,21.
27 Jenichen B, Hanke M, Hilse M, et al. AIP Advances,2016,6(5),55108.
28 Hilse M, Jenichen B, Herfort J. AIP Advances,2017,7(5),56305.
29 Treu J, Speckbacher M, Saller K, et al. Applied Physics Letters,2016,108(5),53110.
30 Li D, Xia Y N. Advanced Materials,2004,16(14),1151.
31 Li W H, Zeng L C, Wu Y, et al. Science China Materials,2016,59(4),287.
32 Han W, Wang Y, Su J, et al. Science China Technological Sciences,2019,62(6),886.
33 Sapkota K R, Gyawali P, Forbes A, et al. Journal of Applied Physics,2012,111(12),123906.
34 Gyawali P, Sapkota K, Pegg I, et al. Journal of Vacuum Science & Technology B,2014,32(4),41801.
35 Dulal R P, Dahal B R, Forbes A, et al. Journal of Vacuum Science & Technology B,2018,36(2),22902.
36 Li Y H, Kou X L, Hou N. Functional Materials Letters,2017,10(4),1750035.
37 Wu Y, Kou X L, Huang J J. Materials Express,2018,8(4),375.
38 Sun Z Q, Liao T, Kou L Z. Science China Materials,2017,60,1.
39 Zheng Z, Gan L, Zhai T Y. Science China Materials,2016,59,200.
40 Masuda H, Fukuda K. Science,1995,268,1466.
41 Lee W, Park S. Chemical Reviews,2014,114(15),7487.
42 Danine A, Schoenleber J, Ghanbaja J, et al. Electrochimica Acta,2018,279,258.
43 Tan M, Chen X. Journal of the Electrochemical Society,2011,159(1),K15.
44 Tu Z M, An M Z, Hu H L. Modern theory and technology of alloy electrodeposition, National Defense Industry Press, China,2016(in Chinese).
屠振密,安茂忠,胡会利.现代合金电沉积理论与技术,国防工业出版社,2016.
45 Zhao Y X, Piao H G, Pan L. Materials Review,2018,32(s1),93(in Chinese).
赵云秀,朴红光,潘礼庆.材料导报,2018,32(专辑32),93.
46 Tian M L, Wang J G, Kurtz J, et al. Nano Letters,2003,3(7),919.
47 Yoo W C, Lee J K. Advanced Materials,2004,16(13),1097.
48 Cao H Q, Wang L D, Qiu Y, et al. Chemphyschem,2006,7(7),1500.
49 Liu L F, Zhou W Y, Xie S S, et al. The Journal of Physical Chemistry C,2008,112(7),2256.
50 Chen L N, Peng Z, Xing X Y, et al. Chinese Journal of Rare Metals,2012,36(6),910(in Chinese).
陈丽娜,彭智,邢晓云,等.稀有金属,2012,36(6),910.
51 Li X R, Wang Y Q, Song G J, et al. Nanoscale Research Letters,2009,4,1015.
52 Guo Y Y, Wang M, Mao X B, et al. Acta Phys. -Chim. Sin.,2010,26(7),2037(in Chinese).
郭元元,汪明,毛晓波,等.物理化学学报,2010,26(7),2037.
53 Mukhtar A, Mehmood T, Khan B S, et al. Journal of Crystal Growth,2016,441,26.
54 Mehmood T, Khan B S, Mukhtar A, et al. International Journal of Materials Research,2015,106,1.
55 Yu Y L, Li J P, Wang J, et al. Catalysts,2019,9(2),152.
56 Li W J, Khan U, Irfan M, et al. Journal of Magnetism and Magnetic Materials,2017,432,124.
57 Lu H X, Liu Y C, Kou X L. Journal of the Electrochemical Society,2018,165(16),D813.
58 Javed K, Zhang X M, Parajuli S, et al. Journal of Magnetism and Magnetic Materials,2020,498,166232.
59 Tu Z M, Hu H L, Yu Y C, et al. Electroplating & Pollution Control,2006,26(4),4(in Chinese).
屠振密,胡会利,于元春,等.电镀与环保,2006,26(4),4.
60 Zhang Y B, Gao X L, Wang D Z, et al. Materials Protection,2011,44(6),18(in Chinese).
张玉碧,高小丽,王东哲,等.材料保护,2011,44(6),18.
61 Lee J, Farhangfar S, Lee J, et al. Nanotechnology,2008,19(36),365701.
62 Dou X C, Li G H, Lei H C. Nano Letters,2008,8(5),1286.
63 Huang X H, Li G H, Sun G Z, et al. Nanoscale Research Letters,2010,5,1057.
64 Zhang J, Jin Y X, Wang H B, et al. Science China Physics, Mechanics and Astronomy,2011,54(7),1244.
65 Zhang J, Jones G A, Shen T H, et al. Journal of Applied Physics,2007,101(5),54310.
66 66 Genovese L, Cocchiara C, Patella B, et al. Journal of Nanoscience and Nanotechnology,2020,20(2),999.
67 Galdun L, Vega V, Vargov Z, et al. ACS Applied Nano Materials,2018,1(12),7066.
68 Wang Y H, Mou J M, Cai W L, et al. Acta Physico-Chimica Sinica,2001,17(2),116.
王银海,牟季美,蔡维理,等.物理化学学报,2001,17(2),116.
69 Wang X H, Chen G, Li C Y, et al. Journal of Materials Engineering,2010,(8),20(in Chinese).
王学华,陈归,李承勇,等.材料工程,2010,(8),20.
70 Zhang H M, Jia W Y, Sun H Y, et al. Journal of Magnetism and Magnetic Materials,2018,468,188.
71 Khan S, Ahmad N, Ahmed N, et al. Journal of Magnetism and Magnetic Materials,2018,460,120.
72 Khan S, Ahmad N, Ahmed N, et al. Journal of Magnetism and Magnetic Materials,2018,465,462.
73 Safeer A, Ahmad N, Khan S, et al. Journal of Applied Physics,2019,125(3),34302.
74 Philippe L, Kacem N, Michler J. The Journal of Physical Chemistry C,2007,111(13),5229.
75 Philippe L, Michler J. Small,2008,4(7),904.
76 Astinchap B, Alemipour Z, Faraji M J. Journal of Magnetism and Magnetic Materials,2020,498,166245.
77 Pan H, Sun H, Poh C, et al. Nanotechnology,2005,16(9),1559.
78 Lu Q Y, Gao F, Komarneni S, et al. Journal of the American Chemical Society,2004,126(28),8650.
79 Ji G B, Gong Z H, Liu Y S, et al. Solid State Communications,2011,151(17),1151.
[1] 邓施列,冼慧敏,陈熹,唐玲云,张弜,毛忠泉. La和Nb共掺提高BiFeO3的磁学性能[J]. 《材料导报》期刊社, 2018, 32(2): 176-179.
[2] 黄海深,孙剑,吴波,杨秀德,李平. LiMgPbSb型四元Heusler合金CrFeHfGa原子缺陷和无序效应[J]. 《材料导报》期刊社, 2018, 32(12): 2124-2128.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed