Please wait a minute...
材料导报  2021, Vol. 35 Issue (14): 14166-14170    https://doi.org/10.11896/cldb.20030149
  金属与金属基复合材料 |
连铸烧成铝锆碳质滑板磨削用Fe-Cu-Sn-Ni基结合剂金刚石工具的性能
魏运先1, 段锋1,*, 尹育航1,2, 彭凯2, 呼丹明1, 丁冬海1
1 西安建筑科技大学材料科学与工程学院,西安 710055
2 广东奔朗新材料股份有限公司,佛山 528313
Properties of Diamond Tools with Fe-Cu-Sn-Ni Matrix for Grinding Sintered Corundum-Zirconia-Graphite Slide Gate
WEI Yunxian1, DUAN Feng1,*, YIN Yuhang1,2, PENG Kai2, HU Danming1, DING Donghai1
1 School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Monte-Bianco Diamond Tool Applications Co. Ltd, Foshan 528313, China
下载:  全 文 ( PDF ) ( 3067KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 烧成刚玉-氧化锆-碳质滑板(铝锆碳质滑板)用于炼钢连铸过程钢水控流,其滑动面表面不平整易造成漏钢等安全隐患,针对滑板磨削加工用金刚石工具的研究非常重要,但相关报道较少。本工作采用热压烧结法制备Fe-Cu-Sn-Ni基胎体、金刚石节块及金刚石工具,并研究了Ni质量分数对它们性能的影响;通过SEM对胎体的断口微观形貌和金刚石工具表面磨损形貌进行分析;通过XRD对胎体的物相进行分析。结果表明,随着Ni质量分数的提高,胎体的硬度和抗弯强度持续上升,胎体的断裂韧窝数目逐渐增多,胎体的断裂方式得到了改善,胎体中γ(Fe,Ni)固溶体含量持续增加;金刚石节块的抗弯强度和把持力系数先增大后减小,均在Ni质量分数为12%时达到最大值;金刚石工具中金刚石的出刃高度逐渐增加,金刚石工具的磨削比先增大后减小,当Ni质量分数为12%时,磨削比达到最大值,为200.8。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏运先
段锋
尹育航
彭凯
呼丹明
丁冬海
关键词:  铁基胎体  金刚石工具  烧成滑板  磨削性能    
Abstract: Sintered corundum-zirconia-graphite slide gate is used to control the flow of molten steel in the steel-making continuous casting process. The research on diamond grinding tools for sintered slide gate is particularly important, due to the sliding surface which must be ground to prevent the risk of steel leakage caused by uneven surface of sliding, but there are few studies reported. In this paper, Fe-Cu-Sn-Ni based matrix, the diamond segment and diamond grinding tools were prepared by hot pressing sintering, and the effects of Ni mass fraction on their properties were investigated. Moreover, the fracture micro-morphology of the matrix and wear surface of diamond grinding tools were both analyzed by SEM. Meanwhile, the phases of the matrix were analyzed by XRD. The results show that, as the Ni mass fraction increased, the hardness, the bending strength, the number of dimples of the matrix, as well as the content of γ(Fe, Ni) solid solution continuously increased. Besides, the fracture mode of the matrix was improved. The bending strength and the holding force coefficient of the diamond segment increased first and then decreased. They reached the maximum when the Ni mass fraction was 12%. Furthermore, the protrusion height of the diamond in diamond grinding tools increased, and the grinding ratio of diamond grinding tools increased first and then decreased. When the Ni mass fraction was 12%, the grinding ratio reached the maximum of 200.8.
Key words:  Fe-based matrix    diamond grinding tools    sintered slide gate    grinding performance
               出版日期:  2021-07-25      发布日期:  2021-08-03
ZTFLH:  TG74  
通讯作者:  * xjddf@163.com   
作者简介:  魏运先,2017年9月就读于西安建筑科技大学,硕士研究生,主要从事超硬材料制备领域的研究。
段锋,2014年12月毕业于西安建筑科技大学,获得博士学位,目前是西安建筑科技大学材料科学与工程学院副教授,主要从事无机非金属材料的教学、科学研究和行政管理工作。研究领域主要包括高温结构材料制备与合成、陶瓷、耐火材料与超硬材料、固体废弃物的综合利用。
引用本文:    
魏运先, 段锋, 尹育航, 彭凯, 呼丹明, 丁冬海. 连铸烧成铝锆碳质滑板磨削用Fe-Cu-Sn-Ni基结合剂金刚石工具的性能[J]. 材料导报, 2021, 35(14): 14166-14170.
WEI Yunxian, DUAN Feng, YIN Yuhang, PENG Kai, HU Danming, DING Donghai. Properties of Diamond Tools with Fe-Cu-Sn-Ni Matrix for Grinding Sintered Corundum-Zirconia-Graphite Slide Gate. Materials Reports, 2021, 35(14): 14166-14170.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030149  或          http://www.mater-rep.com/CN/Y2021/V35/I14/14166
1 Shi K, Xia Y. Refractories, 2018,52(3), 230(in Chinese).
石凯, 夏熠. 耐火材料, 2018,52(3), 230.
2 Li S X, Duan F, Ren X H, et al. Bulletin of the Chinese Ceramic Socie-ty, 2019, 38(9), 2847(in Chinese).
李姝欣, 段锋, 任学华, 等. 硅酸盐通报, 2019, 38(9), 2847.
3 Li H X. Journal of Inorganic Materials, 2018, 33(2), 198(in Chinese).
李红霞. 无机材料学报, 2018, 33(2), 198.
4 Wang K J, Liu X, Li H, et al. Science Technology and Engineering, 2016, 16(29), 212(in Chinese).
王克军, 刘璇, 李辉, 等. 科学技术与工程, 2016, 16(29), 212.
5 Fan H W, Yuan J L, Lv B H, et al. Aviation Precision Manufacturing Technology, 2010, 46(4), 38(in Chinese).
范红伟, 袁巨龙, 吕冰海, 等. 航空精密制造技术, 2010, 46(4), 38.
6 Dai Q L, Xu X P, Wang Y C. Journal of Materials Science and Enginee-ring, 2002, 20(3), 155 (in Chinese).
戴秋莲, 徐西鹏, 王永初. 材料科学与工程, 2002, 20(3),155.
7 Zhang H T. Research on the holding strength of bond to diamond grain in metallic bond. Master's Thesis, Henan University of Technology, China, 2014 (in Chinese).
张恒涛. 金属结合剂对金刚石把持力的研究. 硕士学位论文, 河南工业大学, 2014.
8 Xiao C J. Journal of Synthetic Crystals, 2015, 44(4), 261(in Chinese).
肖长江. 人工晶体学报, 2015, 44(4), 261.
9 Weidenmann K A , Tavangar R , Weber L . Materials Science & Engineering: A (Structural Materials: Properties, Microstructure and Proces-sing), 2009, 523(1-2), 226.
10 Wu Y P, Yan Q Z. Diamond & Abrasives Engineering, 2019, 39(2), 37(in Chinese).
吴燕平, 燕青芝. 金刚石与磨料磨具工程, 2019, 39(2), 37.
11 Artini C, Muolo M L, Passerone A. Journal of Materials Science, 2012, 47(7), 3252.
12 Lu A J, Qin H Q, Lei X X, et al. Superhard Material Engineering, 2014, 26(2), 35(in Chinese).
卢安军, 秦海青, 雷晓旭, 等. 超硬材料工程, 2014, 26(2), 35.
13 Pan X Y, Xie D L, Lin F, et al. Superhard Material Engineering, 2019, 31(2), 1(in Chinese).
潘晓毅, 谢德龙, 林峰, 等. 超硬材料工程, 2019, 31(2), 1.
14 Gao K, Xu X J, Xie X B, et al. Exploration Engineering ( Rock & Soil Drilling and Tunneling), 2014, 41(8), 81(in Chinese).
高科, 徐小健, 谢晓波, 等. 探矿工程:岩土钻掘工程, 2014, 41(8), 81.
15 Han P , Lu X , Li W , et al. Vacuum, 2018, 154, 359.
16 Wang Z Q, Wan L, Hu W D, et al. Materials Review B: Research Papers, 2012, 26(2), 78(in Chinese).
王志起, 万隆, 胡伟达, 等.材料导报:研究篇, 2012, 26(2), 78.
17 Mohamed M, Seleman E S. Journal of Materials Science & Technology, 2008, 24(5), 723.
18 Ding Y L, Hui Z, Xiong H J, et al. Diamond & Abrasives Engineering, 2019, 39(1), 40(in Chinese).
丁玉龙, 惠珍, 熊华军, 等.金刚石与磨料磨具工程, 2019, 39(1), 40.
19 Yuan J L, Zhang D T, Ling Y, et al. Optics and Precision Engineering, 2019, 27(5), 1096(in Chinese).
袁巨龙, 张韬杰, 凌洋, 等.光学精密工程, 2019, 27(5), 1096.
20 Duan L C, Xu S L, Li J P. Diamond & Abrasives Engineering, 2011, 31(6), 42(in Chinese).
段隆臣, 徐少林, 李俊萍.金刚石与磨料磨具工程,2011,31(6),42.
21 Tang R Z, Tian R Z. Binary alloy phase diagram and crystal structure of intermediate phase, Central South University Press, China, 2009 (in Chinese).
唐仁政, 田荣璋.二元合金相图及中间相晶体结构, 中南大学出版社, 2009.
22 Zheng Y Z. Exploration Engineering ( Rock & Soil Drilling and Tunneling), 1985(1), 17(in Chinese).
郑玉琢.探矿工程(岩土钻掘工程), 1985(1), 17.
23 Li Z Y, Li Y M, He H, et al. Nonferrous Metals Science and Enginee-ring, 2016, 7(6), 77(in Chinese).
李志远, 李益民, 何浩, 等.有色金属科学与工程, 2016, 7(6), 77.
24 Gong Y L, Deng C H. Journal of Mechanical Engineering, 2014, 50(9), 185(in Chinese).
龚艳丽, 邓朝晖.机械工程学报, 2014, 50(9), 185.
[1] 侯明, 郭胜惠, 高冀芸, 杨黎, 王梁, 叶小磊. 预合金结合剂成分及烧结工艺对金刚石工具性能的影响[J]. 材料导报, 2019, 33(14): 2403-2407.
[2] 徐俊杰, 万隆, 宋冬冬, 王俊沙, 李颖颖, 刘莹莹. Cu含量对铝基结合剂及其金刚石工具性能的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 104-108.
[3] 周阳, 金秋, 龚小玲, 聂朝胤. Ni-金刚石复合涂层的结构优化及基础磨削性能*[J]. 《材料导报》期刊社, 2017, 31(20): 35-38.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed