Please wait a minute...
材料导报  2021, Vol. 35 Issue (2): 2026-2031    https://doi.org/10.11896/cldb.19110203
  无机非金属及其复合材料 |
鼓浪屿历史风貌建筑砂浆退化现状分析及修复技术探讨
胡红梅, 刘涛, 吴琪昕
厦门大学建筑与土木工程学院,厦门 361005
Analysis of Mortar Deterioration of the Historical Buildings in Kulangsu and Discussion on Restoration Technology
HU Hongmei, LIU Tao, WU Qixin
School of Architecture and Civil Engineering, Xiamen University, Xiamen 361005, China
下载:  全 文 ( PDF ) ( 6290KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过实地调研与取样,研究分析鼓浪屿历史风貌建筑砂浆的现状与性能退化原因。结果表明:鼓浪屿历史风貌建筑多由石灰基砂浆砌筑而成,其中大部分为石灰黏土混合砂浆,少部分为石灰砂浆,现已普遍出现开裂、发霉发黑、渗水、风化剥落等严重退化。长期遭受海风、盐雾的侵蚀和高温、高湿等多种破坏因素的交互作用是加剧石灰基砂浆性能退化的外部原因,且距离海岸线越近,破坏越严重。而石灰的气硬性属性和石灰与黏土、石英砂之间的低火山灰反应程度,是导致石灰基砂浆自身强度及其与砌体之间的粘结强度低且耐久性差的内在原因。基于“原材料、原工艺,最小干预”的古建筑修复原则,提出在传统壳灰砂浆中加入活性硅铝质材料,通过改性技术将气硬性壳灰转变为同时兼具水硬性与气硬性的改性壳灰,用改性壳灰砂浆置换退化砂浆的砌体结构置换补强修复技术。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡红梅
刘涛
吴琪昕
关键词:  鼓浪屿历史风貌建筑  砂浆  退化  修复    
Abstract: The current situation of Kulangsu historical architectural mortar and the reasons for its performance degradation were studied and analyzed through field researching and sampling analyzing. The results show that the historic buildings in Kulangsu are mostly made of lime-based mortar, most of which are lime clay mixed mortar and a few are lime mortar, and serious degradation such as cracking, mildew, water seepage, weathering and spalling has been widespread. The external causes of the deterioration of lime-based mortar performance are the long-term effect of sea wind and salt fog erosion and the combination of high temperature, high humidity and other destruction factors. The closer the buildings are to the coastline, the more severe the damage is. The gas-hardness property of lime and the low pozzolanic reaction among lime, clay and quartz sand are the inherent factors resulting in the low compressive and flexural strength of the lime-based mortar itself, the low bonding strength between the base block and it, and its poor durability. Under the guidance of the “raw materials, original process, and minimum intervention” principle of the rehabilitation of historical buildings, the restoration method of using modified shell ash mortar as reinforcing material is put forward. This method is to add active silicon (aluminum) material to the traditional shell ash mortar through modification technology so that the gas hard shell ash can be transformed into a cementitious material which can possess both hydraulic and gas hardness, and then use this modified lime mortar as a reinforcement material to replace the deteriorated mortar construction so as to complete the restoration.
Key words:  Kulangsu historical buildings    mortar    degradation    restoration
               出版日期:  2021-01-25      发布日期:  2021-01-28
ZTFLH:  TU36  
通讯作者:  hhmxm2002@163.com   
作者简介:  胡红梅,1982年7月本科毕业于武汉理工大学胶凝材料与制品专业,2002年9月获武汉理工大学材料学硕士学位。 1982年11月—2000年9月,先后在长春建材工业学校和武汉科技大学任教,2000年10月至今,在厦门大学从事教学与科研工作,现为厦门大学土木工程系教授。研究方向:高性能混凝土、新型建筑材料、固体废弃物建材资源化利用、建筑加固材料等。教学领域:土木工程材料、新型建筑材料、混凝土新技术等。
刘涛,2018年6月毕业于厦门大学,获得工学学士学位。现为厦门大学建筑与土木工程学院硕士研究生,在胡红梅教授的指导下从事历史建筑加固材料研究。
引用本文:    
胡红梅, 刘涛, 吴琪昕. 鼓浪屿历史风貌建筑砂浆退化现状分析及修复技术探讨[J]. 材料导报, 2021, 35(2): 2026-2031.
HU Hongmei, LIU Tao, WU Qixin. Analysis of Mortar Deterioration of the Historical Buildings in Kulangsu and Discussion on Restoration Technology. Materials Reports, 2021, 35(2): 2026-2031.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110203  或          http://www.mater-rep.com/CN/Y2021/V35/I2/2026
1 Cheng L,Li Z Q. Huazhong Architecture, 2019,37(8),124(in Chinese).
成丽,李志强.华中建筑,2019,37(8),124.
2 Zhao Q S,Zhao H W. World of Antiquity, 2000(5),76 (in Chinese).
赵庆生,赵宏伟.文物世界,2000(5),76.
3 Jiang S,Chen Z H,Wang J J. Chinese & Overseas Architecture, 2019(8),76(in Chinese).
姜姗,陈志宏,王均杰.中外建筑,2019(8),76.
4 Han Z M. Art Life, 2007(2),58 (in Chinese).
韩栽茂.艺术.生活,2007(2),58.
5 Che Z Y,Ling Y X,Wang S S. Architecture & Culture, 2016(2),168 (in Chinese).
车志远,凌亦欣,王绍森.建筑与文化,2016(2),168.
6 Li S Q,Sha Z P. Architecture Technology, 2003(6),412(in Chinese).
李少泉,沙镇平.建筑技术,2003(6),412.
7 Yang Z,Cheng X H. Industrial Construction, 2015,45(7),48(in Chinese).
杨钻,程晓辉.工业建筑,2015,45(7),48.
8 Xie Y R,Shi J G. Wall Materials Innovation & Energy Saving in Buil-dings, 2018(12),55(in Chinese).
谢益人,石建光.墙材革新与建筑节能,2018(12),55.
9 Shi J G,Zhang H L. Wall Materials Innovation & Energy Saving in Buil-dings, 2018(7),63(in Chinese).
石建光,张寒林.墙材革新与建筑节能,2018(7),63.
10 Yang K, Qiu X J, Qu F L, et al. Journal of Building Materials, 2017,20(5),820(in Chinese).
杨凯,邱秀姣,瞿福林,等.建筑材料学报,2017,20(5),820.
11 Xie Q Y,Wu X S. Physics, 2012,41(11),727(in Chinese).
解其云,吴小山.物理,2012,41(11),727.
12 Ma B G,Mei J P,Tan H B, et al. Journal of Wuhan University of Techno-logy (Materials Science),2019,34(3),604.
13 Dong G,Ren X H,Zhang W S,et al. New Building Materials, 2019,46(2),1(in Chinese).
董刚,任雪红,张文生,等.新型建筑材料,2019,46(2),1.
14 Zou D J.Anhui Architecture, 2018,24(6),73(in Chinese).
邹道金.安徽建筑,2018,24(6),73.
15 Huo H L.Bulletin of the Chinese Ceramic Society, 2016,35(5),1642(in Chinese).
霍洪磊.硅酸盐通报,2016,35(5),1642.
16 Sun C,Chen B C. Journal of Fuzhou University(Natural Science Edition), 2013,41(6),1104(in Chinese).
孙潮,陈宝春.福州大学学报(自然科学版),2013,41(6),1104.
17 Tang C M,Luo R,Cheng S G,et al. Journal of Building Structures, 2017,38(10),157(in Chinese).
唐曹明,罗瑞,程绍革,等.建筑结构学报,2017,38(10),157.
18 Liao A Z,Wang H W,Li M,et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2019.116751.
19 Knapen E, Van Gemert D. Cement and Concrete Composites, 2015,58,23.
20 Ni J F,Zhuang C,Liu C. Science-Technology Enterprise, 2014(5),218(in Chinese).
倪晋峰,庄超,刘畅.科技与企业,2014(5),218.
21 Wu C Z,Chu J,Wu S F,et al. Engineering Geology, DOI:10.1016/j.enggeo.2018.12.017.
22 Qian C X,Pan Q F,Wang R X. Science China Technological Sciences, 2010,53(8),2198.
23 Liu X J,Guo Z X,Hu Y D,et al. Earthquake Engineering and Enginee-ring Vibration, 2010,30(6),106(in Chinese).
刘小娟,郭子雄,胡奕东,等.地震工程与工程振动,2010,30(6),106.
24 Yao M,Yao Q F,Liu H T,et al. Earthquake Resistant Engineering and Retrofitting, 2008,30(6),109(in Chinese).
郭猛,姚谦峰,刘海涛,等.工程抗震与加固改造,2008,30(6),109.
25 Li B L,Ding B Z,Huang G J,et al. New Building Materials, 2014,41(9),91(in Chinese).
李保亮,丁百湛,黄国君,等.新型建筑材料,2014,41(9),91.
26 Lokman G,Ceyhun A,Şakir Y,et al. Composite Structures, DOI:10.1016/j.compstruct.2019.111399.
27 Ren Z H,Zeng X T,Sun J B,et al. KSCE Journal of Civil Engineering, 2019,23(11),4735.
28 Ardalan H,Julien M,Mohammadreza I,et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2019.07.169.
29 Rami H Haddad, Catreen S Marji. International Journal of Civil Engineering, DOI: 10.1007/s40999-019-00447-w.
30 Yang H S,Che Y J,Ma X M. Concrete, 2015(1),131(in Chinese).
杨华山,车玉君,马小满.混凝土,2015(1),131.
31 Zhu X R,Li X S,Zhang X H,et al. Journal of Science of Teachers' College and University, 2012,32(2),69(in Chinese).
朱宪荣,李晓生,张循海,等.高师理科学刊,2012,32(2),69.
32 Cao B F. China Building Materials Science & Technology, 2013(5),58 (in Chinese).
曹宝飞.中国建材科技,2013(5),58.
[1] 杨国坤, 蒋国盛, 刘天乐, 覃鑫, 余尹飞. 控温自修复微胶囊的制备及在水合物地层固井水泥浆中的应用[J]. 材料导报, 2021, 35(2): 2032-2038.
[2] 胡方, 王健, 仇越秀, 郭创洲, 刘明东. 生物活性玻璃不同时间体外矿化对创伤修复的影响[J]. 材料导报, 2020, 34(Z2): 142-146.
[3] 金泽康, 张旋, 李敏, 钱春香. 微生物自修复混凝土裂缝自修复动力学模型[J]. 材料导报, 2020, 34(Z2): 194-200.
[4] 赵尚传, 李小鹏, 王少鹏. 混凝土自修复微胶囊壁材的研究现状与进展[J]. 材料导报, 2020, 34(Z2): 201-205.
[5] 朱康杰, 钱春香, 李敏, 苏依林. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(Z2): 212-216.
[6] 赵宇航, 高莹, 王永旺, 陈东, 张云峰. 粉煤灰制硅酸盐防腐砖在复杂工况下的性能退化研究[J]. 材料导报, 2020, 34(Z2): 304-307.
[7] 张绍康, 王茹, 徐玲琳, 钟世云, 张国防, 王培铭. 羟乙基甲基纤维素改性水泥砂浆的物理力学性能和孔隙率[J]. 材料导报, 2020, 34(Z2): 607-611.
[8] 代朝猛, 王泽雨, 段艳平, 刘曙光, 涂耀仁, 李彦. 过硫酸盐高级氧化技术在土壤和地下水修复中的研究进展[J]. 材料导报, 2020, 34(Z1): 107-110.
[9] 赵宇航, 王永旺. 硅酸盐胶黏剂在高温磨蚀条件下的退化行为[J]. 材料导报, 2020, 34(Z1): 181-184.
[10] 周文娟, 侯云芬, 郑东昊. 玻璃纤维对再生骨料板力学性能的影响[J]. 材料导报, 2020, 34(Z1): 216-219.
[11] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[12] 周立生, 刘剑侠, 吴淑新, 陈国辉, 杨士山, 杨立波. 类玻璃高分子材料的研究进展[J]. 材料导报, 2020, 34(Z1): 585-591.
[13] 诸利一, 吕文生, 杨鹏, 王志凯, 王志军. 超声波对全尾砂砂浆流变特性的影响[J]. 材料导报, 2020, 34(6): 6088-6094.
[14] 杨荣周, 徐颖, 陈佩圆, 葛进进. 干、湿养护下橡胶细集料水泥砂浆压缩破裂及能量演化特性[J]. 材料导报, 2020, 34(4): 4049-4055.
[15] 张瑞阳,李成金,张艾丽,周莹. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 3001-3016.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed