Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1623-1627    https://doi.org/10.11896/j.issn.1005-023X.2018.10.010
  材料研究 |
喷枪扫描速率对常压冷等离子喷涂Cu薄膜的影响
郝建民,刘向辉,陈永楠,陈 宏
长安大学材料科学与工程学院,西安 710054
Effect of Gun Scanning Rate on Cu Films Prepared by Atmospheric Pressure Cold Plasma Spraying
HAO Jianmin, LIU Xianghui, CHEN Yongnan, CHEN Hong
College of Materials Science and Engineering, Chang’an University, Xi’an 710054
下载:  全 文 ( PDF ) ( 2535KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了喷枪扫描速率对常压冷等离子喷涂Cu薄膜过程的影响。采用N2和NH3的混合气体作为等离子体气源产生常压冷等离子体,将Cu (NO3)2溶液雾化后通入等离子体射流的下游,雾化驱动气体是流量为4 L/min的N2,保护气体是流量为12 L/min的Ar,利用射流型常压冷等离子体喷涂Cu薄膜。通过X射线光电子能谱仪分析制备的铜薄膜中铜元素化学状态的变化,用扫描电子显微镜观察制备的铜薄膜的微观形貌,讨论了制备薄膜过程中喷枪扫描速率的作用和影响。以N2和NH3的混合气体作为等离子体气源喷涂Cu薄膜时,在实验范围内,随着喷枪扫描速率的增大,制备的薄膜样品中铜元素的化学状态从Cu2+变为Cu+,再变为Cu,且薄膜的晶粒尺寸逐渐减小。在喷涂过程中,Cu(NO3)2在等离子体中会发生分解反应,并产生中间产物,NH3在等离子体中产生的活性粒子会与中间产物反应沉积得到Cu薄膜。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝建民
刘向辉
陈永楠
陈 宏
关键词:  常压  扫描速率  等离子体  铜薄膜    氧化铜    
Abstract: This work aims to study the effect of gun scanning rate on atmospheric cold plasma spraying of Cu film. N2 and NH3 mixed gas was used as the plasma gas source. The copper nitrate solution was atomized and passed into the downstream of the plasma jet. The atomization driving gas was N2 with a flow rate of 4 L/min, the shielding gas was Ar with a flow rate of 12 L/min. The chemical state of copper in the prepared copper film was analyzed by X-ray photoelectron spectroscopy. The microstructures of the prepared copper films were observed by scanning electron microscopy (SEM). The effects of the scanning rate on the spray gun were discussed. As the increasing scanning rate of the gun in the experimental range, the chemical state of the copper elements in the prepared film samples was changed from Cu2+ to Cu+ and then to Cu, and the grain size of the film was gradually reduced. In the spraying process, Cu(NO3)2 in the plasma decomposition reaction would produce intermediates, NH3 in the plasma generated the active particles would react with the intermediate product and deposited to obtain Cu film.
Key words:  atmospheric pressure    scanning rate    plasma    copper film    copper    copper oxide
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TQ320.7  
基金资助: 国家自然科学基金(51301022)
作者简介:  郝建民:男,1961年生,博士,教授,主要研究方向为材料表面改性 E-mail:1951168899@qq.com
引用本文:    
郝建民,刘向辉,陈永楠,陈 宏. 喷枪扫描速率对常压冷等离子喷涂Cu薄膜的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1623-1627.
HAO Jianmin, LIU Xianghui, CHEN Yongnan, CHEN Hong. Effect of Gun Scanning Rate on Cu Films Prepared by Atmospheric Pressure Cold Plasma Spraying. Materials Reports, 2018, 32(10): 1623-1627.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.010  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1623
1 Donegan M, Milosavljevic V, Dowling D P. Activation of PET using an RF atmospheric plasma system[J]. Plasma Chemistry & Plasma Processing,2013,33(5):941.
2 Moritzer E, Budde C, Leister C. Effect of atmospheric pressure plasma pre-treatment and aging conditions on the surface of thermoplastics[J]. Welding in the World Le Soudage Dans Le Monde,2014,59(1):23.
3 Homma T, Furuta M, Takemura Y. Inactivation of escherichia coli using the atmospheric pressure plasma jet of Ar gas[J]. Japanese Journal of Applied Physics,2013,52(3):6201.
4 Colagar A H, Memariani H, Sohbatzadeh F, et al. Nonthermal atmospheric argon plasma jet effects on escherichia coli, biomacromo-lecules[J]. Applied Biochemistry & Biotechnology,2013,171(7):1617.
5 Hsu C M, Lien S T, Yang Y J, et al. Deposition of transparent and conductive ZnO films by an atmospheric pressure plasma-jet-assisted process[J]. Thin Solid Films,2014,570:423.
6 Liu W J, Wang R C. Novel low temperature atmospheric pressure plasma jet systems for silicon dioxide and poly-ethylene thin film de-position[J]. Surface & Coatings Technology,2011,206(5):925.
7 Hsu Y W, Li H C, Yang Y J, et al. Deposition of zinc oxide thin films by an atmospheric pressure plasma jet[J]. Thin Solid Films,2011,519(10):3095.
8 Barnat E V, Nagakura D, Wang P I, et al. Real time resistivity measurements during sputter deposition of ultrathin copper films[J]. Journal of Applied Physics,2002,91(3):1667.
9 Cho N I, Nam H G, Choi Y, et al. Chemical vapor deposition of copper thin films for multi-level interconnections[J]. Microelectronic Engineering,2003,66(1-4):415.
10 Kremmer K, Yezerska O, Schreiber G, et al. Interplay between the deposition mode and microstructure in electrochemically deposited Cu thin films[J]. Thin Solid Films,2007,515(17):6698.
11 Liao Y C, Kao Z K. Direct writing patterns for electroless plated copper thin film on plastic substrates[J]. ACS Applied Materials & Interfaces,2012,4(10):5109.
12 Liu X, Jiang Z, Guo Y, et al. Fabrication of super-hydrophobic nano-sized copper films by electroless plating[J].Thin Solid Films,2010,518(14):3731.
13 Zheng X, Chen G, Zhang Z, et al. A two-step process for surface modification of poly(ethylene terephthalate) fabrics by Ar/O2, plasma-induced facile polymerization at ambient conditions[J]. Surface & Coatings Technology,2013,226(8):123.
14 Homola T, Matouek J, Medvecká V, et al. Atmospheric pressure diffuse plasma in ambient air for ITO surface cleaning[J]. Applied Surface Science,2012,258(18):7135.
15 Jin H J, Shiratani M, Kawasaki T, et al. Plasma-enhanced metal organic chemical vapor deposition of high purity copper thin films using plasma reactor with the H atom source[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films,1999,17(3):726.
16 Hodgkinson J L, Massey D, Sheel D W. The deposition of copper-based thin films via atmospheric pressure plasma-enhanced CVD[J]. Surface & Coatings Technology,2013,230(10):260.
17 Zhao P, Zheng W, Watanabe J, et al. Highly conductive Cu thin film deposition on polyimide by RF-driven atmospheric pressure plasma jets under nitrogen atmosphere[J]. Plasma Processes & Polymers,2015,12(5):431.
18 Urabe K, Hiraoka Y, Sakai O. Hydrazine generation for the reduction process using small-scale plasmas in an argon/ammonia mixed gas flow[J]. Plasma Sources Science & Technology,2013,22(22):032003.
19 Eckardt T, Malléner W, Stver D. Reactive plasma spraying of silicon in controlled nitrogen atmosphere, in thermal spray industrial applications[J]. Journal of Antimicrobial Chemotherapy,1994,41(3):417.
20 Hernandez J, Wrschka P, Oehrlein G S. Surface chemistry studies of copper chemical mechanical planarization[J]. Journal of the Electrochemical Society,2001,148(7):G389.
21 Feng Y, Tan K L, Hsieh A K, et al. Corrosion mechanisms and products of copper in aqueous solutions at various pH values[J]. Corrosion -Houston Tx-,1997,53(5):389.
22 Njeh A, Wieder T, Fuess H. Reflectometry studies of the oxidation kinetics of thin copper films[J]. Surface & Interface Analysis,2010,33(7):626.
23 Gao W, Gong H, He J, et al. Oxidation behaviour of Cu thin films on Si wafer at 175—400 ℃[J]. Materials Letters,2001,51(1):78.
24 Nagai H, Hiramatsu M, Hori M, et al. Etching organic low dielectric film in ultrahigh frequency plasma using N2/H2 and N2/NH3 gases[J]. Journal of Applied Physics,2003,94(3):1362.
25 Kusano Y, Leipold F, Fateev A, et al. Production of ammonia-derived radicals in a dielectric barrier discharge and their injection for denitrification[J]. Surface & Coatings Technology,2005,200(1-4):846.
26 Park J, Giles N D, Moore J, et al. A comprehensive kinetic study of thermal reduction of NO2 by H2[J]. Journal of Physical Chemistry A,2010,102(49):10099.
27 Byun Y, Ko K B, Cho M, et al. Effect of hydrogen generated by dielectric barrier discharge of NH3 on selective non-catalytic reduction process[J]. Chemosphere,2009,75:815.
28 Nyman H, Talonen T, Roine A, et al. Statistical approach to quality control of large thermodynamic databass[J]. Metallurgical & Materials Transactions B,2012,43(5):1133.
[1] 丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
[2] 初红涛, 刘晓函, 赵明, 高立娣, 秦世丽, 韩爽, 王军. 铜纳米簇基荧光探针的合成及应用研究进展[J]. 材料导报, 2025, 39(2): 23110149-10.
[3] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[4] 万胤辰, 王匀, 李瑞涛, 徐磊, 于超, 顾宇佳. 无压烧结工艺对浆料直写式定向多孔铜组织及致密度的影响[J]. 材料导报, 2024, 38(3): 22040202-6.
[5] 张宏吉, 彭文飞, 李贺, 邵熠羽, Moliar Oleksandr. Cu-20%Fe粉末异步轧制有限元模拟及工艺参数影响规律[J]. 材料导报, 2024, 38(3): 22090131-7.
[6] 高娜, 庞佩琦, 李智, 牟国栋, 崔天成, 杜贤龙, 李涛, 肖国萍. 电解工艺条件对Cu基催化剂电化学还原CO2的产物分布影响[J]. 材料导报, 2024, 38(24): 23100052-5.
[7] 陈钰莹, 赵璐, 白云峰, 冯锋. 铜基金属有机框架在肿瘤治疗中的研究进展[J]. 材料导报, 2024, 38(21): 23070142-15.
[8] 晁昀暄, 戴乐阳, 魏钰坤, 王永坚, 杜金洪. 磺酸钙/油酸改性碳基二硫化钼的制备及在乳化油中的摩擦学性能[J]. 材料导报, 2024, 38(2): 22090049-7.
[9] 黄凌宇, 廖继飞, 张骞, 付艳, 肖文艳, 朱洁, 杨书镔. 蜂窝状介孔CuSiO3掺杂材料热催化分解NO的性能研究[J]. 材料导报, 2024, 38(19): 23090181-6.
[10] 梁红玉, 王斌, 陆光. 新型氮空位g-C3N4/Cu2(OH)2CO3异质结的构建及广谱光催化降解有机染料的性能[J]. 材料导报, 2024, 38(19): 23070195-6.
[11] 王东, 于昊松, 梁栋, 王立鹏, 马廷壮, 余镕, 杨斌, 田阳. 高纯铜制备方法及研究进展[J]. 材料导报, 2024, 38(19): 23060161-11.
[12] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[13] 郭伟玲, 邢志国, 李鹏, 马国政, 王海斗. 冷喷涂铜基复合涂层及后处理技术的研究现状[J]. 材料导报, 2024, 38(19): 23010049-13.
[14] 韩秋丽, 安士忠, 宋克兴, 刘海涛, 周延军, 程楚, 张彦敏. 海洋工程用铜镍合金的腐蚀与防护研究进展[J]. 材料导报, 2024, 38(18): 23020095-8.
[15] 宁晨红, 高硕洪, 郑江鹏, 王枭, 杨军红, 苏允海, 刘敏, 闫星辰. 蓝光激光熔覆纯铜覆层的组织及性能[J]. 材料导报, 2024, 38(17): 23040078-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed