Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23060161-11    https://doi.org/10.11896/cldb.23060161
  金属与金属基复合材料 |
高纯铜制备方法及研究进展
王东1,2,3,4, 于昊松1,2,3,4, 梁栋1,2,3,4, 王立鹏1,2,3,4, 马廷壮1,2,3,4, 余镕1,2,3,4, 杨斌1,2,3,4, 田阳1,2,3,4,*
1 昆明理工大学云南省有色金属真空冶金重点实验室,昆明 650093
2 昆明理工大学省部共建复杂有色金属资源清洁利用国家重点实验室,昆明 650093
3 昆明理工大学真空冶金国家工程研究中心,昆明 650093
4 昆明理工大学冶金与能源工程学院,昆明 650093
Preparation Methods and Research Progress of High Purity Copper
WANG Dong1,2,3,4, YU Haosong1,2,3,4, LIANG Dong1,2,3,4, WANG Lipeng1,2,3,4, MA Tingzhuang1,2,3,4, YU Rong1,2,3,4, YANG Bin1,2,3,4, TIAN Yang1,2,3,4,*
1 Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
2 State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
3 National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China
4 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 26230KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高纯铜因其优良的物理化学性质,在集成电路、半导体、航空航天等领域发挥重要作用。我国是铜生产与消费第一大国,但99.999%及以上高纯铜高效制备技术的缺乏制约着铜产业竞争力的提升,如何高效制备高纯铜是行业研究的重点。本文从高纯铜的制备方法及生产工艺出发,综述了电解、萃取、离子交换、真空蒸馏、区域熔炼等高纯铜制备工艺的研究现状,主要包括纯化机理、制备效率及提纯效果,着重归纳了添加剂、温度梯度、电流密度、保温时间等因素对制备高纯铜的影响。最后,通过对比湿法工艺与火法工艺的优缺点,重点探讨了火法真空蒸馏制备高纯铜的现状,并根据目前高纯铜制备的研究进展,展望了未来高纯铜制备的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王东
于昊松
梁栋
王立鹏
马廷壮
余镕
杨斌
田阳
关键词:    高纯材料  分离纯化  绿色  湿法冶金  火法冶金    
Abstract: High purity copper plays an important role in integrated circuits, semiconductors, aerospace and other fields due to its excellent physical and chemical properties. China is the largest country in copper production and consumption. However, the improvement of the competitiveness in copper industry is restricted by the lack of efficient preparation technology for 99.999% and above. How to efficiently prepare high-purity copper becoming the focus of industry research. In this paper, the research status of high-purity copper preparation processes such as electrolysis, extraction, ion exchange, vacuum distillation, and zone melting are reviewed based on the preparation methods and production processes of high-purity copper, including purification mechanism, preparation efficiency, and purification effect. The effects of additives, temperature gradient, current density, and holding time on the preparation of high-purity copper are summarized. Finally, the present situation of high purity copper prepared by vacuum distillation is discussed through comparing the advantages and disadvantages between the hydrometallurgy process and the pyrometallurgy process. According to the current research progress of the preparation of high purity copper, the future development direction of the preparation of high purity copper is prospected.
Key words:  copper    high-purity material    separation and purification    green    hydrometallurgy    pyrometallurgy
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TF114  
  TF135  
基金资助: 云南省重大科技专项(202102AB080008;202102AB080005);云南省科技厅科技计划资助项目(202305AS350012)
通讯作者:  *田阳,通信作者,昆明理工大学冶金与能源工程学院教授、博士研究生导师,瑞典国家冶金研究院出站博士后,2012年博士毕业于昆明理工大学。目前主要从事镁合金材料、二次资源回收利用、高纯金属材料制备等方面的研究。发表论文50余篇,包括Journal of Magnesium and Alloys、Vacuum、Journal of Materials Research and Technology、Journal of Cleaner Production等。yhs970501@163.com   
作者简介:  王东,2021年7月于沈阳理工大学获得学士学位,现为昆明理工大学冶金与能源工程学院和真空冶金国家工程研究中心硕士研究生,在田阳教授的指导下进行研究。目前主要研究方向为高纯铜材料及废旧金属二次资源回收利用。
引用本文:    
王东, 于昊松, 梁栋, 王立鹏, 马廷壮, 余镕, 杨斌, 田阳. 高纯铜制备方法及研究进展[J]. 材料导报, 2024, 38(19): 23060161-11.
WANG Dong, YU Haosong, LIANG Dong, WANG Lipeng, MA Tingzhuang, YU Rong, YANG Bin, TIAN Yang. Preparation Methods and Research Progress of High Purity Copper. Materials Reports, 2024, 38(19): 23060161-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23060161  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23060161
1 Xiao Y. China Chemical Trade, 2020, 12(17), 71(in Chinese).
肖颖. 中国化工贸易, 2020, 12(17), 71.
2 Tamas K, Kouji M, Yukio I, et al. Metallurgical and Materials Transactions B, 1997, 28(6), 987.
3 Yang H Y, Ma Z C, Lei C H, et al. Science China Technological Sciences, 2020, 63(12), 2505.
4 Li Z, Xiao Z, Jiang Y B, et al. The Chinese Journal of Nonferrous Metals, 2019, 29(9), 2019(in Chinese).
李周, 肖柱, 姜雁斌, 等. 中国有色金属学报, 2019, 29(9), 2019.
5 Wen S, Chang L L, Shang X J, et al. The Chinese Journal of Nonferrous Metals, 2015, 25(6), 1655(in Chinese).
文姗, 常丽丽, 尚兴军, 等. 中国有色金属学报, 2015, 25(6), 1655.
6 Li L, Pan D, Li B, et al. Resources, Conservation and Recycling, 2017, 127, 1.
7 Liu S, Zhang Y, Su Z, et al. Journal of Materials Research and Technology, 2020, 9(3), 2846.
8 Kato M. Journal of Operations Management, 1995, 47(12), 44.
9 Yuichiro S, Susumu S, Atsushi F. U. S. patent, US2011123389A1, 2011.
10 Guo Q, Xi X, Yang S, et al. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4), 626.
11 Virolainen S, Suppula I, Sainio T. Hydrometallurgy, 2014, 142, 84.
12 Itam Z, Beddu S, Mohammad D, et al. Materials Today: Proceedings, 2019, 17, 727.
13 Lu X W, Peng J B. Mining, Metallurgy and Exploration, 2018, 27, 54.
14 Guo X Y, Tian Q H. High purity metal materials, Metallurgical Industry Press, China, 2010.
15 Yang L, Zhu M L, Weng W, et al. Materials Reports, 2024, 38 (10), 113(in Chinese).
杨蕾, 朱茂兰, 翁威, 等. 材料导报, 2024, 38 (10), 113.
16 Xu Y, Li J, Liu L. Procedia Environmental Sciences, 2016, 31, 162.
17 Ma Y F. World Nonferrous Metals, 2010(9), 70(in Chinese).
马永峰. 世界有色金属, 2010(9), 70.
18 Wei Q F, Zhang Q X. Non-Ferrous Smelting, 2003, 32(3), 10(in Chinese).
魏琦峰, 张启修. 有色冶炼, 2003, 32(3), 10.
19 Antony L V M, Reddy R G. Journal of Operations Management, 2003, 55, 14.
20 Choi J Y, Kim D S. Journal of Hazardous Materials, 2003, 99(2), 147.
21 Phillips A J, Smart J S, Smith A A. Transactions of the Metallurgical Society of AIME, 1941, 143, 272.
22 Li J. XinJiangYouSe JinShu, 2014, 37(S1), 127(in Chinese).
李杰. 新疆有色金属, 2014, 37(S1), 127.
23 Zhong M L, Zhou F, Wu W H. Gold, 2020, 41(2), 62(in Chinese).
钟茂礼, 周方, 吴卫煌. 黄金, 2020, 41(2), 62.
24 Huang J. Hunan Nonferrous Metals, 1996(6), 36(in Chinese).
黄坚. 湖南有色金属, 1996(6), 36.
25 Xiao F, Zhang Y, Yong W, et al. Transactions of Nonferrous Metals Society of China, 2007, 17(5), 1069.
26 Zhou C Q. Non-Ferrous Smelting, 1986(11), 29(in Chinese).
周崇清. 有色冶炼, 1986(11), 29.
27 三宅保彦. 日本金属学会会報, 1992, 31(4), 267.
28 Zhao D J. Special-cast and Non-ferrous Alloys, 2010, 30(3), 288(in Chinese).
赵大军. 特种铸造及有色合金, 2010, 30(3), 288.
29 Du T T. Preparation of high purity copper by nitric acid system. Master's Thesis, Northeastern University, China, 2014 (in Chinese).
杜婷婷. 硝酸体系电解制备高纯铜的工艺研究. 硕士学位论文, 东北大学, 2014.
30 Cao H Z, Feng W Y, Zhang H B, et al. Transactions of Nonferrous Metals Society of China, 2020, 30(5), 1387.
31 Zhang L, Xu Z. Journal of Cleaner Production, 2016, 127, 19.
32 Kekesi T, Mimura K, Isshiki M. Materials Transactions, JIM, 1995, 36(5), 649.
33 Zhao K N, Li X, Su D. Acta Physico-Chimica Sinica, 2020, 37(7), 2009077 (in Chinese).
赵康宁, 李潇, 苏东. 物理化学学报, 2020, 37(7), 2009077.
34 Li T Q, Pang B, Qu M Y. Nonferrous Metals Engineering, 2016, 6(4), 6(in Chinese).
李廷取, 庞勃, 曲明洋. 有色金属工程, 2016, 6(4), 6.
35 Ke L, Peng Y L, Zheng Y J. Mining and Metallurgical Engineering, 2013, 33(1), 74(in Chinese).
柯浪, 彭映林, 郑雅杰. 矿冶工程, 2013, 33(1), 74.
36 Guo X Y, Tian Q H. High-purity metal material, Metallurgical Industry Press, China, 2010 (in Chinese).
郭学益, 田庆华. 高纯金属材料, 冶金工业出版社, 2010.
37 Mei X Y, Ma W H, Lyu G Q, et al. Foundry Technology, 2010, 31(11), 1432 (in Chinese).
梅向阳, 马文会, 吕国强, 等. 铸造技术, 2010, 31(11), 1432.
38 Curtolo D C, Friedrich S, Friedrich B. Journal of Crystallization Process and Technology, 2017, 7(4), 65.
39 Mo W, Dong H C, Wu X N. Titanium smelting, Metallurgical Industry Press, China, 2011, pp.7 (in Chinese).
莫畏, 董鸿超, 吴享南. 钛冶炼, 冶金工业出版社, 2011, pp.7.
40 Guo X, Zhou Y, Zha G, et al. Separation and Purification Technology, 2020, 242, 116787.
41 Dai Y N. Non-ferrous vacuum metallurgy, Metallurgical Industry Press, China, 1998, pp.125.
42 Fu Y B, Cui J, Lu Y P, et al. Chinese Journal of Vacuum Science and Technology, 2013, 33(1), 77(in Chinese).
付亚波, 崔静, 卢一平, 等. 真空科学与技术学报, 2013, 33(1), 77.
43 Fu Y B, Chen J, Liu N, et al. Rare Metal Materials and Engineering, 2011, 40(S2), 103(in Chinese).
付亚波, 陈洁, 刘宁, 等. 稀有金属材料与工程, 2011, 40(S2), 103.
44 Chen W D, Wang C G, Wang G Q. World Nonferrous Metals, 2017(21), 4 (in Chinese).
陈卫东, 王崇国, 王国强. 世界有色金属, 2017(21), 4.
45 Xu S, Song B Y, Jiang W L, et al. Chinese Journal of Vacuum Science and Technology, 2015, 35(8), 72 (in Chinese).
许帅, 宋冰宜, 蒋文龙, 等. 真空科学与技术学报, 2015, 35(8), 72.
46 Richards J L. Journal of Applied Physics, 1960, 31(3), 600.
47 Zhang J Y. Light alloy fabrication technology, The Encyclopedia of China Press, China, 2001, pp.12(in Chinese).
张君尧. 轻合金加工技术, 《中国冶金百科全书》金属材料卷出版. 2001, pp.12.
48 Tan Y, Shi S. Aeronautical Manufacturing Technology, 2018, 61(23-24), 28(in Chinese).
谭毅, 石爽. 航空制造技术, 2018, 61(23-24), 28.
49 Wu H, Yan H, Wang D. Chemical Engineer, 2001(3), 16(in Chinese).
吴洪, 阎红, 王丹. 化学工程师, 2001(3), 16.
50 Yao X, Furuya K, Nakamura Y, et al. Journal of Materials Research, 1995, 10, 3003.
51 Li D S. Study on preparation of high purity indium by vacuum distillation-regional melting method. Master's Thesis, Kunming University of Science and Technology, China, 2012 (in Chinese).
李冬生. 真空蒸馏-区域熔炼联合法制备高纯铟的研究. 硕士学位论文, 昆明理工大学, 2012.
52 Li W L, Luo Y H. Mining and Metallurgy, 2010, 2(19), 57(in Chinese).
李文良, 罗远辉. 矿冶, 2010, 2(19), 57.
53 Wan H L. Study on migration behavior of impurity element in regional melting and pure aluminum. Ph.D. Thesis, Kunming University of Science and Technology, China, 2021 (in Chinese).
万贺利. 区域熔炼提纯铝过程中杂质元素迁移行为研究. 博士学位论文, 昆明理工大学, 2021.
54 Zhou Z H, Mo H B, Zeng D M. Chinese Journal of Rare Metals, 2004, 28(4), 807.
55 Pfann W G. Techniques of zone melting and crystal growing, Academic Press, US, 1957, pp.423.
56 新藤裕一朗, 竹本幸一. 日本专利, TW200643192, 2006.
57 《Interpretation of metallurgical Nouns》 writing group, Metallurgical terms explanation: Metallurgical Industry Press, China, 1975 (in Chinese).
《冶金名词解释》编写组. 冶金名词解释, 冶金工业出版社, 1975.
58 Zhang Z Q, Zhang J, Liu Q. Materials Reports, 2011, 25(8), 12(in Chinese).
张志清, 张静, 刘庆. 材料导报, 2011, 25(8), 12.
59 Pfann W G. Metallurgical Reviews, 1957, 2(1), 29.
60 Kurosaka A, Tominaga H, Takayama T, et al. Advances in Cryogenic Engineering Materials: Part A, 1990, 36, 749.
61 Mei P R, Moreira S P, Cardoso E, et al. Solar Energy Materials and Solar Cells, 2012, 98, 233.
62 Rozin K M, Vigdorovich V N, Krestovnikov A N. American Meteorological Society, 1961, 5, 56.
63 Li B, Zhang S. Metallurgical Equipment, 2015(5), 13(in Chinese).
李碚, 张森. 冶金设备, 2015(5), 13.
64 Ikeda T, Marolf N J, Snyder G J. Crystal Growth & Design, 2011, 11(9), 4183.
65 Roussopoulos G S, Rubini P A. Journal of Crystal Growth, 2004, 271(3-4), 333.
66 Yu L, Kang X, Chen L, et al. Materials (Basel), 2021, 14(8), 2064.
67 Min N B. The physical basis of crystal growth,Shanghai Science and Technology Press, China, 1982 (in Chinese).
闵乃本. 晶体生长的物理基础, 上海科学技术出版社, 1982.
68 You X, Tan Y, Cui H, et al. Materials Characterization, 2021, 173, 110925.
69 Li Q. Purification of indium by zone refining method and simulation. Master's Thesis, Guilin University of Technology, China, 2018(in Chinese).
李情. 区域熔炼提纯铟及仿真模拟. 硕士学位论文, 桂林理工大学, 2018.
70 Chen L N. Research on purification of indium by oxidation refining-zone refining combined method. Master's Thesis, Guilin University of Technology, China, 2020 (in Chinese).
陈罗娜. 氧化精炼-区域熔炼联合法提纯铟的研究. 硕士学位论文, 桂林理工大学, 2020.
71 Tan Y. Simulation analysis of contact heating indium metal regional melting device and temperature field. Master's Thesis, Guilin University of Technology, China, 2017 (in Chinese).
谭杨. 接触加热式金属铟区域熔炼装置及温度场模拟分析. 硕士学位论文, 桂林理工大学, 2017.
72 Zhang X, Li H Q, Zhao J Y, et al. Special-cast and Non-ferrous Alloys, 2015, 35(4), 446(in Chinese).
张曦, 李华清, 赵解扬, 等. 特种铸造及有色合金, 2015, 35(4), 446.
73 Su H, Shen Z, Ren Q, et al. Ceramics International, 2020, 46(11), 18750.
74 Spim Jr J A, Bernadou M J S, Garcia A. Journal of Alloys and Compounds, 2000, 298(1-2), 299.
75 Huang J, Ren Q B, Hu Z Q, et al. Rare Metal Materials and Engineering, 2017, 46(12), 3633.
76 Si P Z, Fan Z G. Low Temperature and Superconductivity, 2000, 20(3), 25(in Chinese).
司平占, 樊占国. 低温与超导, 2000, 20(3), 25.
77 Zhang X X, Friedrich S, Friedrich B. Journal of Crystallization Process and Technology, 2018, 8(1), 33.
78 Tian L S, Yin Y X, Hu Z F, et al. Mining and Metallurgy, 2014, 23(2), 49(in Chinese).
田丽森, 尹延西, 胡志方, 等. 矿冶, 2014, 23(2), 49.
79 Shi J, Luo C, Wang H S, et al. Rare Metal Materials and Engineering, 2010, 39(S1), 418(in Chinese).
石洁, 罗超, 王怀胜, 等. 稀有金属材料与工程, 2010, 39(S1), 418.
80 Wu J. Research on the recrystallization behavior of high-purity copper and its grain refinement process. Master's Thesis, Harbin Institute of Technology, China, 2018 (in Chinese).
吴旌. 高纯铜再结晶行为及其晶粒细化工艺研究. 硕士学位论文, 哈尔滨工业大学, 2018.
81 山田義人. 日本金属学会誌, 1964, 28(3), 149.
82 Yeh H M, Yeh W H. Separation Science and Technology, 1979, 14(9), 795.
83 Chen J, Fu Y B, Liu N, et al. Chinese Journal of Vacuum Science and Technology, 2011, 31(4), 495(in Chinese).
陈洁, 付亚波, 刘宁, 等. 真空科学与技术学报, 2011, 31(4), 495.
84 Sun C X, Zhao C J, Zhang W X, et al. Proceedings of the 4th annual conference of electron beam ion beam professional committee of China electrotechnical society and the 2nd annual conference of electron beam welding professional committee of Chinese society of electronics. Guangxi, 1991, pp.175(in Chinese).
孙从熙, 赵昌吉, 张万祥, 等. 中国电工技术学会电子束离子束专业委员会第四届电子束离子束学术年会暨中国电子学会焊接专业委员会第二届电子束焊接学术年会论文集. 广西, 1991, pp.175.
85 Zhao Q, Li S Y, Guo Z N, et al. Materials Reports, 2024, 38 (14), 41(in Chinese).
赵强, 李淑英, 郭智楠, 等. 材料导报, 2024, 38(14), 41.
86 Liu L H, Tan D S. Shanghai Nonferrous Metals, 2004(2), 60(in Chinese).
刘林海, 谈定生. 上海有色金属, 2004(2), 60.
87 Zhang H, Zhao J, Xu J, et al. Russian Journal of Non-Ferrous Metals, 2020, 61, 9.
88 Pfann W G. Journal of Operations Management, 1952, 4(7), 747.
89 Cheung N, Bertazzoli R, Garcia A. Journal of Crystal Growth, 2008, 310(6), 1274.
90 Rodway G H, Hunt J D. Journal of Crystal Growth, 1989, 97(3-4), 680.
91 Pfann W G. Science, 1962, 135(3509), 1101.
92 Ding L, Cheng J, Wang T, et al. Minerals Engineering, 2019, 135, 21.
93 Li W. Study on vacuum distillation and zinc removal in secondary resources of copper-nickel-zinc alloy. Master's Thesis, Kunming University of Science and Technology, China, 2016 (in Chinese).
李玮. 铜镍锌合金二次资源真空蒸馏脱除锌的研究. 硕士学位论文, 昆明理工大学, 2016.
94 Liu F S. Study on volatile law of silver in vacuum alloy. Master's Thesis, Kunming University of Science and Technology, China, 2017 (in Chinese).
刘繁松. 真空蒸馏铜银合金中银挥发规律的研究. 硕士学位论文, 昆明理工大学, 2017.
[1] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[2] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[3] 苗珊珊, 王业健, 李澄, 钱淇, 徐国跃. 基于同色同谱特征的模拟绿色植被光谱材料研究进展[J]. 材料导报, 2024, 38(7): 22080054-7.
[4] 王镇, 肖丽俊, 干勇. 新材料引领支撑绿色低碳经济发展[J]. 材料导报, 2024, 38(3): 22060075-7.
[5] 万胤辰, 王匀, 李瑞涛, 徐磊, 于超, 顾宇佳. 无压烧结工艺对浆料直写式定向多孔铜组织及致密度的影响[J]. 材料导报, 2024, 38(3): 22040202-6.
[6] 张宏吉, 彭文飞, 李贺, 邵熠羽, Moliar Oleksandr. Cu-20%Fe粉末异步轧制有限元模拟及工艺参数影响规律[J]. 材料导报, 2024, 38(3): 22090131-7.
[7] 高娜, 庞佩琦, 李智, 牟国栋, 崔天成, 杜贤龙, 李涛, 肖国萍. 电解工艺条件对Cu基催化剂电化学还原CO2的产物分布影响[J]. 材料导报, 2024, 38(24): 23100052-5.
[8] 陈钰莹, 赵璐, 白云峰, 冯锋. 铜基金属有机框架在肿瘤治疗中的研究进展[J]. 材料导报, 2024, 38(21): 23070142-15.
[9] 黄凌宇, 廖继飞, 张骞, 付艳, 肖文艳, 朱洁, 杨书镔. 蜂窝状介孔CuSiO3掺杂材料热催化分解NO的性能研究[J]. 材料导报, 2024, 38(19): 23090181-6.
[10] 梁红玉, 王斌, 陆光. 新型氮空位g-C3N4/Cu2(OH)2CO3异质结的构建及广谱光催化降解有机染料的性能[J]. 材料导报, 2024, 38(19): 23070195-6.
[11] 田小平, 王长龙, HidayatiAsrah, Lim Chung Han, 平浩岩, 齐洋, 马锦涛, 荆牮霖, 刘治兵, 郑永超, 翟玉新, 刘枫. 钒钛铁尾矿制备绿色建筑材料的研究进展[J]. 材料导报, 2024, 38(19): 23070040-10.
[12] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[13] 郭伟玲, 邢志国, 李鹏, 马国政, 王海斗. 冷喷涂铜基复合涂层及后处理技术的研究现状[J]. 材料导报, 2024, 38(19): 23010049-13.
[14] 韩秋丽, 安士忠, 宋克兴, 刘海涛, 周延军, 程楚, 张彦敏. 海洋工程用铜镍合金的腐蚀与防护研究进展[J]. 材料导报, 2024, 38(18): 23020095-8.
[15] 宁晨红, 高硕洪, 郑江鹏, 王枭, 杨军红, 苏允海, 刘敏, 闫星辰. 蓝光激光熔覆纯铜覆层的组织及性能[J]. 材料导报, 2024, 38(17): 23040078-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed