Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 24070187-11    https://doi.org/10.11896/cldb.24070187
  金属与金属基复合材料 |
形状记忆合金约束混凝土柱轴压性能研究
徐立丹1,2,3, 杨懿1, 赵继涛4, 陈明1,2,*
1 内蒙古科技大学土木工程学院,内蒙古 包头 014010
2 内蒙古自治区高校智能建造与运维工程研究中心,内蒙古 包头 014010
3 内蒙古自治区土木工程安全与耐久重点实验室,内蒙古 包头 014010
4 攀枝花学院土木与建筑工程学院,四川 攀枝花 617000
Study on Axial Compression Performance of Concrete Columns Confined by Shape Memory Alloy Strips
XU Lidan1,2,3, YANG Yi1, ZHAO Jitao4, CHEN Ming1,2,*
1 College of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
2 Inner Mongolia University Intelligent Construction and Operation Engineering Research Center, Baotou 014010, Inner Mongolia, China
3 Inner Mongolia Key Laboratory of Safety and Durability for Civil Engineering, Baotou 014010, Inner Mongolia, China
4 School of Civil and Architecture Engineering, Panzhihua University, Panzhihua 617000, Sichuan, China
下载:  全 文 ( PDF ) ( 37281KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过轴压试验,研究了形状记忆合金(SMA)条带对承载力及变形能力的影响。基于试验实测数据,利用ABAQUS建立有限元模型并进行了参数化分析,提出了预应力SMA条带约束混凝土柱轴向抗压强度的预测模型和本构模型。结果表明:(1)混凝土柱试件经预应力SMA条带约束后,不仅可以提高柱的轴压承载力,提高幅值在2.70%~17.17%,还能使约束柱具有良好的变形能力,峰值位移幅值提升可达50.25%,可有效改善其轴压性能。(2) 模拟结果表明,数值模拟结果与试验值分析结果吻合良好,验证有限元模型的可靠性;确定了预应力大小为关键影响因素,较未施加预应力试件承载力可提高22.6%。(3) 将提出的模型与数值模拟、试验值进行对比,比值均值为1.02;并与其他研究的试验数据进行验证,结果显示,95%的试验数据试验值与计算值误差都在±20%范围内,吻合程度较好。提出的应力-应变全曲线模型与试验结果吻合良好,能够准确描述预应力SMA条带约束混凝土柱在轴压作用下的受力变形特征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐立丹
杨懿
赵继涛
陈明
关键词:  形状记忆合金  轴向受压  混凝土柱  有限元模型  计算模型    
Abstract: The influence of SMA strips on it’s bearing capacity and deformation capacity was investigated through axial compression tests. Based on the experimental measurement data, a finite element model was established. Use ABAQUS to establish and conduct parametric analysis. A prediction model and constitutive model for the axial compressive strength of prestressed SMA strip constrained concrete columns have been proposed. The results show that:(i) After being restrained by pre-stressed SMA strips, concrete column specimens can not only have a higher axial compressive bearing capacity, with an increase amplitude of 2.70%—17.17%, but also have good deformation capacity. The peak displacement amplitude can be increased by 50.25%, which can effectively improve its axial compressive performance. (ii) The simulation results show that the numerical simulation results are in good agreement with the experimental analysis results, verifying the reliability of the finite element model. The magnitude of prestress is the key influencing factor, and the bearing capacity of the specimen can be increased by 22.6% compared with that without prestress. (iii) The model proposed here was compared with simulation and experimental values, with a mean ratio of 1.02, meanwhile, validated with experimental data from other research. 95% of the experimental data showed an error of ±20% between the experimental and calculated values, indicating a good degree of agreement. The proposed stress-strain full curve model is in good agreement with experimental results and can accurately describe the stress deformation characteristics of prestressed SMA strip constrained concrete columns under axial compression.
Key words:  shape-memory alloy    axial compression    concrete column    finite element model    computational model
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  TU398+.9  
基金资助: 国家自然科学基金(52468026); 2025年内蒙古自治区土木工程安全与耐久重点实验室项目(2025KYPT0113);中央支持地方高校改革发展项目-土木工程提质培育学科项目(0404052507);内蒙古科技大学基本科研业务费(2023YXXS217;2023YXXS218)
通讯作者:  *陈明,博士,内蒙古科技大学土木工程学院教授、博士研究生导师。目前主要从事钢结构、空间结构理论与设计方面的研究。cmlx-1978@163.com   
作者简介:  徐立丹,博士,内蒙古科技大学土木工程学院副教授、硕士研究生导师。目前主要从事形状记忆合金复合材料力学方面的研究。
引用本文:    
徐立丹, 杨懿, 赵继涛, 陈明. 形状记忆合金约束混凝土柱轴压性能研究[J]. 材料导报, 2025, 39(24): 24070187-11.
XU Lidan, YANG Yi, ZHAO Jitao, CHEN Ming. Study on Axial Compression Performance of Concrete Columns Confined by Shape Memory Alloy Strips. Materials Reports, 2025, 39(24): 24070187-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070187  或          https://www.mater-rep.com/CN/Y2025/V39/I24/24070187
1 Xiao C Z, Li J H, Ma T Y, et al. Industrial Architecture, 2024, 54(1), 20(in Chinese).
肖从真, 李建辉, 马天怡, 等. 工业建筑, 2024, 54(1), 20.
2 Cheng S G. Architecture, 2021, 51(17), 91(in Chinese).
程绍革. 建筑结构, 2021, 51(17), 91.
3 Raza S, Khan I K M, Menegon J S, et al. Sustainability, 2019, 11(11), 3208.
4 Zhang D, Li N, Li Z X, et al. Journal of Constructional Steel Research, 2020, 177, 106441.
5 Guo Z X, Huang Q X, Liu Y, et al. Engineering Mechanics, 2016, 33(3), 1(in Chinese).
郭子雄, 黄群贤, 刘阳, 等. 工程力学, 2016, 33(3), 1.
6 Ye C, Li J H, Gu J F, et al. Industrial Architecture, 2020, 50(2), 177(in Chinese).
叶超, 李俊华, 顾炬锋, 等. 工业建筑, 2020, 50(2), 177.
7 Zhang B, Yang Y, Liu Y, et al. Engineering Mechanics, 2016, 33(3), 104(in Chinese).
张波, 杨勇, 刘义, 等. 工程力学, 2016, 33(3), 104.
8 Lu C L, Wang P, Wang Q. Engineering Seismic and Reinforcement Renovation, 2019, 41(4), 99(in Chinese).
卢春玲, 王鹏, 王强. 工程抗震与加固改造, 2019, 41(4), 99.
9 Cheng D H, Yang Y H. Journal of Building Science and Engineering, 2017, 34(4), 34(in Chinese).
程东辉, 杨燕红. 建筑科学与工程学报, 2017, 34(4), 34.
10 Xian G J, Guo R, Li C, et al. Mechanics of Advanced Materials and Structures, 2023, 30(4), 814.
11 Lara Z, Dario V, Abdeldjelil B, et al. Engineering Structures, 2022, 255, 113878.
12 Sirimontree S, Keawsawasvong S, Thongchom C. Journal of Applied Science and Engineering, 2021, 24(3), 401.
13 Guo R, Li C, Xian G. Engineering Structures, 2023, 274, 115176.
14 Wang Q, Lv J, Lu C, et al. Journal of Building Engineering, 2022, 45, 103589.
15 Zhou C, Siha A, Qiu Y, et al. Journal of Structural Engineering, 2019, 145(8), 04019070.
16 Tran H, Balandraud X, Destrebecq J. Archives of Civil and Mechanical Engineering, 2015, 15(1), 292.
17 Hong C K, Qian H, Song G. Materials, 2020, 13(5), 1127.
18 Yu Z G, Han X, Zhong L, et al. Chinese Journal of Highways, 2013, 26 (3), 124(in Chinese).
余志刚, 韩西, 钟厉, 等. 中国公路学报, 2013, 26(3), 124.
19 Qian H, Hong C K, Kang L P, et al. Journal of Civil Engineering, 2020, 53 (S2), 198(in Chinese).
钱辉, 洪陈凯, 康莉萍, 等. 土木工程学报, 2020, 53(S2), 198.
20 Xu L D. A study on the mechanical properties of shape memory alloy composite laminates. Ph. D. Thesis, Harbin Engineering University, China, 2019(in Chinese).
徐立丹. 形状记忆合金复合材料层合板的力学性能研究. 博士学位论文, 哈尔滨工程大学, 2019.
21 Shahverdi M, Czaderski C, Motavalli M, et al. Construction and Building Materials, 2016, 112, 28.
22 Shahverdi M, Czaderski C, Annen P, et al. Engineering Structures, 2016, 117, 263.
23 Czaderski C, Shahverdi M, Brönnimann R, et al. Construction and Building Materials, 2014, 56, 94.
24 Jeong S, Kim K E, Choi H, et al. Journal of Building Engineering, 2024, 82, 108228.
25 Han T H, Dong Z Q, Zhong H, et al. Engineering Structures, 2023, 294, 116754.
26 Aliakbar G,TogayO. Composite Structures, 2018, 202, 943.
27 Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard test methods for mechanical properties of ordinary concrete:GB/T 50081-2016, China Architecture & Building Press, China, 2016(in Chinese).
中华人民共和国住房和城乡建设部. 普通混凝土力学性能试验方法标准:GB/T 50081-2016, 中国建筑工业出版社, 2016.
28 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Metallic materials-tensile testing-Part 1, room temperature test method:GB/T 228. 1-2021, Standards Press of China, China, 2021 (in Chinese).
中华人民共和国国家质量监督检验检疫总局. 金属材料拉伸试验第1部分, 室温试验方法:GB/T 228. 1-2021, 中国标准出版社, 2021.
29 Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard test methods for concrete structures:GB/T 50152-2012, China Architecture & Building Press, 2012(in Chinese).
中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准:GB/T 50152-2012, 中国建筑工业出版社, 2012.
30 Pan S, Liao F Y, Zhang W J, et al. Engineering Mechanics, https://link.cnki.net/urlid/11.2595.o3.20240116.1004.008(in Chinese).
潘爽, 廖飞宇, 张伟杰, 等. 工程力学, https://link.cnki.net/urlid/11.2595.o3.20240116.1004.008.
31 Mander J B, Priestley M J N, Park R. Journal of Structural Engineering, 1988, 114(8), 1804.
32 Du Y S, Gao D H, Chen Z H, et al. Journal of Tianjin University (Natural Science and Engineering Technology Edition), 2022, 55 (1), 66(in Chinese).
杜颜胜, 高鼎辉, 陈志华, 等. 天津大学学报(自然科学与工程技术版), 2022, 55(1), 66.
33 Zeng X, Wu W B, Huo J S, et al. Engineering Mechanics, 2021, 38 (2), 52(in Chinese).
曾翔, 吴晚博, 霍静思, 等. 工程力学, 2021, 38(2), 52.
34 Gong W K, Liu X Y, Jing Y C, et al. Composite Materials Science and Engineering, 2022(7), 11(in Chinese).
宫唯康, 刘晓阳, 荆玉才, 等. 复合材料科学与工程, 2022(7), 11.
35 Ma G, Zou Y F, He Q F, et al. Building Structure, 2021, 51 (2), 119(in Chinese).
马高, 邹雅峰, 何庆锋, 等. 建筑结构, 2021, 51(2), 119.
36 Liu Y, Gao Z Q, Lu J Y, et al. Building Technology, 2015, 46 (S2), 48(in Chinese).
刘义, 高宗祺, 陆建勇, 等. 建筑技术, 2015, 46(S2), 48.
37 Zhang B, Yang Y, Xia Z Y. Silicate Bulletin, 2021, 40 (7), 2200(in Chinese).
张波, 杨勇, 夏泽宇. 硅酸盐通报, 2021, 40(7), 2200.
38 Lu C L, Ouyang K, Guo C, et al. Engineering Structures, 2023, 275, 115113.
39 Saadatmanesh H, Ehsani M R, Li M W. Aci Structural Journal Technical Paper, 1994, 91(4), Title no. 91.
40 Yang Y, Zhang T, Zhang X Z, et al. Industrial Construction, 2015, 45 (3), 29(in Chinese).
杨勇, 张涛, 张雪昭, 等. 工业建筑, 2015, 45(3), 29.
41 Xie J, Yang L, Xu F Q. Engineering Mechanics, 2020, 37 (11), 195(in Chinese).
谢剑, 杨丽, 徐福泉. 工程力学, 2020, 37(11), 195.
42 Zhou C D, Bai X B, Lyu X L, et al. Civil and Environmental Engineering, 2012, 34 (S1), 179(in Chinese).
周长东, 白晓彬, 吕西林, 等. 土木建筑与环境工程, 2012, 34(S1), 179.
43 Yang Y, Li S Y, Liu Y, et al. Industrial Building, 2015, 45 (3), 1(in Chinese).
杨勇, 李少语, 刘义, 等. 工业建筑, 2015, 45(3), 1.
44 Cao F B, Zhang X F, Yang X G, et al. Journal of Building Structures, 2022, 43 (S1), 362(in Chinese).
曹芙波, 张秀芳, 杨晓刚, 等. 建筑结构学报, 2022, 43(S1), 362.
45 Deng Z C, Wang T Y. Journal of Southwest Jiaotong University, 2025, 60(1), 72(in Chinese).
邓宗才, 王天宇. 西南交通大学学报, 2025, 60(1), 72.
46 Michel S, Mohsen S, Amir M, et al. Journal of Structural Engineering, 1998, 124, 1025.
47 Zhang Q, Li S Y, Zhao Y S, et al. Journal of Building Structures, 2021, 42(4), 166(in Chinese).
张勤, 李三亚, 赵永胜, 等. 建筑结构学报, 2021, 42(4), 166.
48 Wan Y T, Zheng W Z, Wang Y. Engineering Mechanics, 2022, 39 (11), 166(in Chinese).
万宇通, 郑文忠, 王英. 工程力学, 2022, 39(11), 166.
49 Zhou C D, Siha A, Qiu Y K, et al. Journal of Structural Engineering, 2019, 145(8), 04019070.
[1] 宋国锋, 张师伟, 刘俊, 刘建坤, 梁思明. 硫铝酸盐膨胀剂对水泥砂浆早期徐变与内部湿度的影响[J]. 材料导报, 2025, 39(4): 23100111-7.
[2] 杨涛, 刘章锐, 刘博, 张阳. 考虑应变幅值影响的超弹性SMA相变棘轮行为宏观唯象本构模型[J]. 材料导报, 2025, 39(17): 24050012-6.
[3] 杨院霞, 郝刚领, 千佳祥, 王幸福, 许巧平, 王伟国. 硼元素及热轧对CuAlNi合金微观组织和力学性能的影响[J]. 材料导报, 2025, 39(13): 24070166-7.
[4] 张括, 李明鹏, 周国安, 张龄匀. 加载频率对镍钛形状记忆合金循环压缩过程中相变、塑性与传热相互作用的影响[J]. 材料导报, 2025, 39(10): 24060186-6.
[5] 刘杨, 王刚, 王岭, 齐鹏远, 杨健, 王博全, 郑伟. 高强韧钢淬火-配分工艺中碳配分计算模型的研究进展[J]. 材料导报, 2024, 38(8): 22080207-9.
[6] 周玉浩, 连鸣, 王颜凯, 苏明周. 7×19构型NiTi形状记忆合金绞线超弹性试验研究[J]. 材料导报, 2024, 38(21): 23070029-10.
[7] 秦煜, 王亭, 辛景舟, 汤喻杰, 王威娜. 形状记忆合金增强水泥基复合材料及其构件研究进展[J]. 材料导报, 2024, 38(19): 23060190-9.
[8] 罗军, 李楠, 王曦, 刘昌奎. 纳米压痕法测量航空发动机关键材料残余应力的研究进展[J]. 材料导报, 2024, 38(11): 22100300-13.
[9] 赵光伟, 李达, 陈健, 方东, 黄才华, 石增敏, 叶永盛. Hf含量对Ti49-XNi44Cu6Y1HfX形状记忆合金的组织与超弹性的影响[J]. 材料导报, 2023, 37(9): 21010179-6.
[10] 栾利强, 文双寿, 余和德, 任俊颖. 碳纳米管改性沥青混合料低温裂缝扩展分析[J]. 材料导报, 2023, 37(20): 22030145-7.
[11] 宫兴, 英红, 梁凤芯, 刘卫东, 许修权. 降低沥青路面温度的双向热诱导相变结构研究[J]. 材料导报, 2023, 37(13): 21040242-6.
[12] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[13] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[14] 雷波, 郝刚领, 李育川, 王金. 冷却速率对CuAlNi形状记忆合金阻尼行为的影响[J]. 材料导报, 2022, 36(24): 21090026-4.
[15] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed