Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24080054-7    https://doi.org/10.11896/cldb.24080054
  无机非金属及其复合材料 |
基于BBR试验的高模量沥青低温本构模型的建立与评价
沙东1,2,*, 李根1, 王芳1, 唐民3, 刘乙丁2
1 宁夏大学土木与水利工程学院,银川 750021
2 宁夏公路勘察设计院有限责任公司,银川 750001
3 宁夏公路管理中心,银川 750002
Establishment and Evaluation of Constitutive Model of High Modulus Asphalt at Low Temperature Based on BBR Test
SHA Dong1,2,*, LI Gen1, WANG Fang1, TANG Min3, LIU Yiding2
1 School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
2 Ningxia Highway Survey and Design Institute Limited Liability Company, Yinchuan 750001, China
3 Ningxia Highway Management Center, Yinchuan 750002, China
下载:  全 文 ( PDF ) ( 3537KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 选取四种代表性高模量沥青进行弯曲梁流变(BBR)试验并获取其低温蠕变特征参数;然后分别采用三种黏弹性本构模型探究了不同高模量沥青低温本构关系;最后通过灰色关联分析(GRA)模型进一步评价了适用于高模量沥青的低温本构模型。结果表明,废胶粉复合改性高模量沥青(CRA)与高模量剂改性沥青(HIA)的低温极限温度为-12 ℃,高掺量SBS改性剂改性沥青(SBA)与35#硬质沥青制备的高模量沥青(HGA)的低温极限温度为-6 ℃。与三参数固体(TPS)模型及四参数固体(FPS)模型相比,在评价高模量沥青的低温性能时Burgers模型的拟合精度较高,模型参数的波动性低且规律性显著;而且GRA模型评价结果显示Burgers模型更适于表征高模量沥青在低温下的蠕变行为。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
沙东
李根
王芳
唐民
刘乙丁
关键词:  高模量沥青  BBR试验  本构模型  蠕变行为  GRA模型    
Abstract: Four kinds of typical high modulus asphalts were selected for the bending beam rheology (BBR) test, and their creep characterization para-meters at low temperatures were obtained. Then, three viscoelastic constitutive models were used to explore the constitutive relationships of several high modulus asphalts at low temperatures, respectively. Finally, the constitutive models applicable to high modulus asphalts at low temperatures were further evaluated by the gray relation analysis (GRA) model. The results show that the low-temperature limit of crumb rubber composite modified high modulus asphalt (CRA) and high modulus agent modified asphalt (HIA) is -12 ℃, while that of high-content SBS modified asphalt (SBA) and high modulus asphalt prepared with 35# hard asphalt (HGA) is -6 ℃. Compared with the three-parameter solid (TPS) model and the four-parameter solid (FPS) model, the Burgers model has a higher fitting accuracy, a more significant regularity, and a lower vo-latility of the model parameters when evaluating the low temperature performance of high modulus asphalt. Moreover, through the GRA evaluation results, it's found that the Burgers model is more suitable for characterizing the creep behavior of high modulus asphalt at low temperatures than TPS model and the FPS model.
Key words:  high modulus asphalt    BBR test    constitutive model    creep behavior    GRA model
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  U414  
基金资助: 宁夏回族自治区重点研发计划项目(2022BEG02008);宁夏回族自治区全职引进高层次人才科研启动项目(2023BSB03023)
通讯作者:  *沙东,宁夏大学土木与水利工程学院准聘副教授、硕士研究生导师。研究方向为碱激发等低碳胶凝材料、道路工程新材料研发与应用。shadong@nxu.edu.cn   
引用本文:    
沙东, 李根, 王芳, 唐民, 刘乙丁. 基于BBR试验的高模量沥青低温本构模型的建立与评价[J]. 材料导报, 2025, 39(22): 24080054-7.
SHA Dong, LI Gen, WANG Fang, TANG Min, LIU Yiding. Establishment and Evaluation of Constitutive Model of High Modulus Asphalt at Low Temperature Based on BBR Test. Materials Reports, 2025, 39(22): 24080054-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080054  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24080054
1 Guo N S, Chu Z Y, Fang C Z, et al. Journal of Highway and Transport, 2023, 36(12), 77(in Chinese).
郭乃胜, 褚召阳, 房辰泽, 等. 中国公路学报, 2023, 36(12), 77.
2 Li B, Zhang R. Highway, 2023, 68(7), 246(in Chinese).
李博, 张瑞. 公路, 2023, 68(7), 246.
3 Wang C, Song L H, Sun Y G, et al. Materials Reports, 2024, 38(9), 73(in Chinese).
王超, 宋立昊, 孙彦广, 等. 材料导报, 2024, 38(9), 73.
4 Wang C, Gong G Y, Chen Y F. China Civil Engineering Journal, 2023, 56(2), 110(in Chinese).
王超, 宫官雨, 陈乙方. 土木工程学报, 2023, 56(2), 110.
5 Yang Y, Gong Y, Zheng Y, et al. Journal of Highway and Transportation Research and Development, 2022, 39(12), 27(in Chinese).
杨毅, 龚演, 郑俞, 等. 公路交通科技, 2022, 39(12), 27.
6 Li Q F, Wang S M. Highway Engineering, 2017, 42(3), 205(in Chinese).
李青芳, 王淑妹. 公路工程, 2017, 42(3), 205.
7 Li H, Guo R X, Yan Y. Chemical Industry and Engineering Progress, 2022, 41(S1), 351(in Chinese).
李昊, 郭荣鑫, 晏永. 化工进展, 2022, 41(S1), 351.
8 Zhang Z Q, Zheng W Z, Gui Z J, et al. Journal of Materials Science & Engineering, 2023, 41(1), 551(in Chinese).
张争奇, 郑文章, 桂增俭, 等. 材料科学与工程学报, 2023, 41(1), 551.
9 Wang R L, Yuan G Q. Journal of Materials Science and Engineering, 2022, 40(2), 255(in Chinese).
王瑞林, 袁光权. 材料科学与工程学报, 2022, 40(2), 255.
10 You Z, Mills-Beale J, Fini E, et al. Journal of Materials in Civil Engineering, 2011, 23(11), 1569.
11 Huang W D, Yan C Q, Liu S P, et al. Journal of Building Materials, 2016, 19(6), 1088(in Chinese).
黄卫东, 颜川奇, 刘少鹏, 等. 建筑材料学报, 2016, 19(6), 1088.
12 Hajikarimi P, Aflaki S, Sadat Hosseini A. Construction and Building Materials, 2013, 49, 682.
13 Walubita L F, Fuentes L, Tanvir H, et al. Journal of Materials in Civil Engineering, 2021, 33(9).
14 Yu J D, Li K, Pan Y Q, et al. Petroleum Asphalt, 2024, 38 (4), 18(in Chinese).
郁嘉栋, 李款, 潘友强, 等. 石油沥青, 2024, 38 (4), 18.
15 Huang Q, Liu A, Yan E H. Highway, 2022, 67(3), 42(in Chinese).
黄琪, 刘安, 严二虎. 公路, 2022, 67(3), 42.
16 Wei Q, Zhao J Z, Wei X L, et al. China Building Materials Science & Technology, 2024, 33 (2), 70(in Chinese).
魏强, 赵静卓, 魏小龙, 等. 中国建材科技, 2024, 33(2), 70.
17 Zhang X, Han C, Yang J, et al. Materials, 2021, 14(24), 7727.
18 Mi S Z, Li Y X, Zhang H W. Advances in Materials Science and Engineering, 2022, 2022(1), 2374241.
19 Xu J Q, Yang E H, Luo H Y, et al. Journal of Building Materials, 2020, 23(1), 70(in Chinese).
徐加秋, 阳恩慧, 罗浩原, 等. 建筑材料学报, 2020, 23(1), 70.
20 Li H, Dong B, Zhao D, et al. Arabian Journal for Science and Engineering, 2019, 44(5), 5043.
21 Tang P, Mo L, Pan C, et al. Construction and Building Materials, 2018, 161, 175.
22 Zou G, Zhuo R, Sun X, et al. International Journal of Pavement Engineering, 2020, 23(5), 1584.
23 Yang X, Liu G, Rong H, et al. Construction and Building Materials, 2022, 347, 128599.
24 Cong P, Xun P, Xing M, et al. Construction and Building Materials, 2013, 40, 632.
25 Ding X, Ma T, Zhang W, et al. Construction and Building Materials, 2017, 157, 975.
26 Tan Y Q, Fu Y K, Ji L, et al. Journal of Harbin Institute of Technology, 2016, 48(3), 66(in Chinese).
谭忆秋, 符永康, 纪伦, 等. 哈尔滨工业大学学报, 2016, 48(3), 66.
27 Tang C, Wang D Y, Hu C, et al. Journal of Building Materials, 2022, 25(9), 938(in Chinese).
唐成, 王端宜, 胡聪, 等. 建筑材料学报, 2022, 25(9), 938.
28 Yang L J, Long N Q, Wang L, et al. Journal of Building Materials, 2022, 25(12), 1313(in Chinese).
杨丽娟, 龙念泉, 王岚, 等. 建筑材料学报, 2022, 25(12), 1313.
29 Ye Y, Yang X H, Chen C Y. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2009, 37(3), 116(in Chinese).
叶永, 杨新华, 陈传尧. 华中科技大学学报(自然科学版), 2009, 37(3), 116.
30 Xu J W, Ye Y, Xie X. Journal of China Three Gorges University(Natural Sciences), 2022, 44(2), 38(in Chinese).
徐家伟, 叶永, 谢旋. 三峡大学学报(自然科学版), 2022, 44(2), 38.
31 He D P, Pan Z Q, Wang H G, et al. New Chemical Materials, 2022, 50(1), 187(in Chinese).
何东坡, 潘志强, 王宏光, 等. 化工新型材料, 2022, 50(1), 187.
[1] 雷经发, 赵晨霞, 刘涛, 沈朝阳, 李思悦. 激光熔覆Inconel 625合金高温高应变率下的力学行为及本构模型[J]. 材料导报, 2025, 39(4): 23120263-7.
[2] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[3] 万思宇, 苏三庆, 曹振, 王照耀. 混杂纤维高强高延性水泥基复合材料弯曲性能及预测模型[J]. 材料导报, 2025, 39(23): 24120022-10.
[4] 孙丽, 蓝世航, 王超. 聚丙烯纤维增韧海砂珊瑚混凝土单轴压缩应力-应变本构关系及微观结构[J]. 材料导报, 2025, 39(23): 24070114-9.
[5] 秦龙, 何建丽, 董万鹏, 黄少波, 王辉, 王志海. 镁合金高温本构模型研究进展[J]. 材料导报, 2025, 39(23): 24110218-8.
[6] 马骏杰, 冯治国, 康分行, 刘勇. 基于硬度的TA1薄壁圆管钉套本构模型研究[J]. 材料导报, 2025, 39(23): 24090094-8.
[7] 殷溥隆, 李艳, 田勇, 翟越, 李乐, 何峻宇, 贾宇, 程禹翰. 冻融循环作用下黄土基水泥土三轴压缩力学特性及本构模型研究[J]. 材料导报, 2025, 39(21): 24100069-8.
[8] 敬彬, 胡文军, 陶俊林. Taylor撞击实验及其应用研究进展[J]. 材料导报, 2025, 39(2): 23100210-10.
[9] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[10] 杨涛, 刘章锐, 刘博, 张阳. 考虑应变幅值影响的超弹性SMA相变棘轮行为宏观唯象本构模型[J]. 材料导报, 2025, 39(17): 24050012-6.
[11] 夏军武, 朱致淳, 林俊东, 何源, 于峻, 柏建彪. BFRP约束煤矸石混凝土轴压本构模型研究[J]. 材料导报, 2025, 39(16): 24070132-6.
[12] 权文立, 黄炜, 唐达, 孙文博, 苗欣蔚, 侯莉娜. 蒸压砂加气混凝土损伤本构模型研究[J]. 材料导报, 2025, 39(14): 24050166-6.
[13] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[14] 孙涛, 王辉, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌. 基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型[J]. 材料导报, 2024, 38(5): 23080049-9.
[15] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[8] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[9] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
[10] LIU Hongyin, YANG Hongyu, CHEN Mingfeng. Impact of Isocyanate Index on Flame Retardancy, Thermal Stability andCombustion Behaviors of Rigid Polyurethane Foam[J]. Materials Reports, 2019, 33(12): 2071 -2075 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed