Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 1-5    https://doi.org/10.11896/j.issn.1005-023X.2017.07.001
  材料综述 |
蒸发液滴中的流动与传质行为:理论与应用*
胡银春1,张雪荣1,黄棣1,魏延1,苏晓妹2,周琼3
1 太原理工大学力学学院,山西省材料强度与结构冲击重点实验室, 太原 030024;
2 中国天辰工程有限公司, 天津 300400;
3 中国石油大学北京理学院, 北京 102200
Flow and Mass Transfer Laws in Drying Droplets: Theory and Applications
HU Yinchun1, ZHANG Xuerong1, HUANG Di1, WEI Yan1, SU Xiaomei2, ZHOU Qiong3
1 College of Mechanics, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024;
2 China Tianchen Engineering Corporation, Tianjin 300400;
3 College of Science,China University of Petroleum-Beijing, Beijing 102200
下载:  全 文 ( PDF ) ( 1341KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 液滴蒸发过程伴随着热量和物质的传输,是现代技术领域普遍存在而又未充分认识的一个复杂过程。综述了蒸发液滴中的流动与传质规律及其应用研究进展,主要包括典型的蒸发液滴过程及其中流动方式、聚合物溶液液滴蒸发成膜花样、复合材料溶液液滴蒸发成膜花样等液滴蒸发理论的实验研究。同时简要分析了蒸发液滴理论在喷墨打印、纳米材料制备等领域的应用研究。最后对聚合物溶液液滴蒸发理论的现状及未来应用需求进行了总结与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡银春
张雪荣
黄棣
魏延
苏晓妹
周琼
关键词:  液滴  聚合物  颗粒  毛细管流动  Marangoni对流  沉积膜    
Abstract: The drying of droplet is a process with heat and matter transfer. It is a process that permeates most disciplines in modern technologies and has not been fully understood. The flow and mass transfer laws in the drying droplets and their application are reviewed in this paper. It mainly includes experiments aimed at principles for typical process of droplet drying and the correspon-ding matter flow modes, film patterns from drying polymer solution droplet, composite solution droplet, and complex droplets. Meanwhile, the applications of drying droplet theory in ink-jet printing, disease diagnosis and nanomaterial preparation are briefly analyzed. Finally, present situation and future application requirements for drying droplet theory are summarized and prospected.
Key words:  droplet    polymer    particle    capillary flow    Marangoni convection    deposited film
出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  TB324  
基金资助: *国家自然科学基金(11502158;51503140);太原理工大学人才基金(tyut-rc201315a);太原理工大学教育教学改革项目(tyut-201417)
作者简介:  胡银春:女,1983年生,博士,讲师,主要从事高分子溶液液滴成膜理论及其应用研究E-mail:yinchunhu117@163.com
引用本文:    
胡银春,张雪荣,黄棣,魏延,苏晓妹,周琼. 蒸发液滴中的流动与传质行为:理论与应用*[J]. 《材料导报》期刊社, 2017, 31(7): 1-5.
HU Yinchun, ZHANG Xuerong, HUANG Di, WEI Yan, SU Xiaomei, ZHOU Qiong. Flow and Mass Transfer Laws in Drying Droplets: Theory and Applications. Materials Reports, 2017, 31(7): 1-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.001  或          https://www.mater-rep.com/CN/Y2017/V31/I7/1
1 Gans B J de, Duineveld P C, Schubert U S. Inkjet printing of polymers: State of the art and future developments[J]. Adv Mater,2004,16(3):203.
2 Sirringhaus H, Kawase T, et al. High-resolution inkjet printing of all-polymer transistor circuits[J]. Science,2000,290:2123.
3 Denkov N D, Velev D, Kralchevsky P A, et al. Mechanism of formation of two-dimensional crystals from latex particles on substrates[J]. Langmuir,1992,8:3183.
4 Dimitrov A S, Dushkin C D, Yoshimura H, et al. Observations of latex particle two-dimensional-crystal nucleation in wetting films on mercury, glass, and mica[J]. Langmuir,1994,10:432.
5 Alivisatos P. Colloidal quantum dots. from scaling laws to biological applications[J]. Pure Appl Chem,2000,72(1-2):3.
6 Deegan R D, Bakajin O, et al. Capillary flow as the cause of ring stains from dried liquid drops[J]. Nature,1997,389:827.
7 Hu H, Larson R G. Marangoni effect reverses coffee-ring depositions[J]. J Phys Chem B,2006,110:7090.
8 Bormashenko E, Bormashenko Y, Pogreb R, et al. Droplet behavior on flat and textured surfaces: Co-occurrence of deegan outward flow with Marangoni solute instability[J]. J Colloid Interface Sci,2007,306(1):128.
9 Inen A C, Petrock A M, Chou T, et al. Applied surface science crystal morphology variation ininkjet-printed organic materials[J]. Appl Surf Sci,2011,258(2):827.
10 Jung Y, Kajiya T, Yamaue T, et al. Film formation kinetics in the drying process of polymer solution enclosed by bank[J]. Jpn J Appl Phys,2009, 48(3):031502-1.
11 Gu X, Wang G. Interfacial morphology and friction properties of thin PEO and PEO/PAA blend films[J]. Appl Surf Sci,2011,257(6):1952.
12 Tadashi K, Wataru K, Tohru O, et al. Controlling the drying and film formation processes of polymer solution droplets wit addition of small amount of surfactants[J]. J Phys Chem B,2009,113:15460.
13 Willmer D, Baldwin A, John D, et al. Growth of solid conical structures during multistage drying of sessile poly (ethylene oxide) droplets[J]. Phys Chem Chem Phys,2010,12:3998.
14 Kim J H, Ahn S I, Kim J H, et al. Evaporation of water droplets on polymer surfaces[J]. Langmuir,2007,23(11):6163.
15 Fang X, Li B, Petersen E, Ji Y, et al. Factors controlling the drop evaporation constant[J]. J Phys Chem B,2005,109:20554.
16 Kajiya T, Kaneko D, Doi M. Dynamical visualization of “coffee stain phenomenon” in droplets of polymer solution via fluorescent microscopy[J]. Langmuir,2008,24(21):12369.
17 Xu X F, Luo J. Marangoni flow in an evaporating water droplet[J]. Appl Phys Lett,2007,91(12):124102.
18 Xu Xuefeng.The flow in the evaporating water droplets[D]. Beijing: Tsinghua University,2007(in Chinese).
徐学锋. 蒸发水滴中的液体流动特性研究[D].北京:清华大学,2007.
19 Buffone C, Sefiane K. Investigation of thermocapillary convective patterns and their role in the enhancement of evaporation from pores[J]. Int J Multiphase Flow,2004,30(9):1071.
20 Buffone C, Sefiane K, Christy J R E. Experimental investigation of self-induced thermocapillary convection for an evaporating meniscus in capillary tubes using micro-particle image velocimetry[J]. Phys Fluids,2005, 17(5):052104.
21 He Q, Hallinan K P. A new particle image velocimetry technique for three-dimensional full field fluid flow measurement in evaporating films[J]. Experimental Thermal Fluid Sci,1998,17(3):230.
22 Hegseth J J, Rashidnia N, Chai A. Natural convection in droplet evaporation[J]. Phys Rev E,1996,54(2):1640.
23 Steinchen A, Sefiane K. Self-organised Marangoni motion at evaporating drops or in capillary menisci-thermohydro dynamical model[J]. J Non-Equilibrium Thermodynam,2005,30(1):39.
24 Hu H, Larson R G. Analysis of the microfluid flow in an evaporating sessile droplet[J]. Langmuir,2005,21:3963.
25 Hu H, Larson R G. Analysis of the effects of marangoni stresses on the microflow in an evaporating sessile droplet[J]. Langmuir,2005,21:3972.
26 Meysam R Barmi, Carl D Meinhart. Convective flows in evaporating sessile droplets[J]. J Phys Chem B,2014,118:2414.
27 Kajiya T, Monteux C, et al. Contact-line recession lea-ving a macroscopic polymer film in the drying droplets of water-poly(N,N-dimethylacrylamide) solution[J]. Langmuir,2009,25(12):6934.
28 Kim J H, Park S B, Kim J H, et al. Polymer transports inside eva-porating water droplets at various substrate temperatures[J]. J Phys Chem C,2011,115:15375.
29 Hu Y C, et al. Various nucleation and surface profiles induced by micro-flows in drying droplets of water-poly(ethylene oxide) solution at heating substrates[J]. Petroleum Sci,2013,10(2):262.
30 Hu Y C, Zhou Q, Wang Y F, et al. Peculiar surface profile of poly(ethylene oxide) film with ring-like nucleation distribution induced by Marangoni flow effect[J]. Colloids Surf A,2013,428:39.
31 Kaya D, Belyi V A, et al. Pattern formation in drying droplets of polyelectrolyte and salt[J]. J Phys Chem,2010,133:114905-1.
32 Smalyukh I, Zribi O, Butler J, et al. Structure and dynamics of li-quid crystalline pattern formation in drying droplets of DNA[J]. Phys Rev Lett,2006,96: 177801-1.
33 Uno K, Hayashi K, Hayashi T, et al. Particle adsorption in evaporating droplets of polymer latex dispersions on hydrophilic and hydrophobic surfaces[J]. Colloid Polym Sci,1998,276(9):810.
34 Yakhno T A, et al. The informative-capacity phenomenon of drying drops[J]. IEEE Eng Medicine Biol Mag,2005,24(2): 96.
35 Yunker P J, Still T, et al. Suppression of the coffee-ring effect by shape-dependent capillary interactions[J]. Nature,2011,476:308.
36 Chris S H, Ding Y L, Simon B. The influence of nanoparticle shape on the drying of colloidal suspensions[J]. J Colloid Interface Sci,2010,352:99.
37 Sun P Z, Ma R Z, Wang K L, et al. Suppression of the coffee-ring effect by self-assembling graphene oxide and monolayer titania[J]. Nanotechnology,2013,24:075601-1.
38 Han W, Lin Z Q. Learning from “coffee rings”: Ordered structures enabled by controlled evaporative self-assembly[J]. Angew Chem Int Ed,2012, 51:1534.
39 Tekin E, Smith P J, Schubert U S. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles[J]. Soft Matter,2008,4:703.
40 Wang L, Song Y. Controllable printing droplets for high-resolution patterns[J]. Adv Mater,2014,26:6950.
41 Kuang M, Wang J, Bao B, et al. Inkjet printing patterned photonic crystal domes for wide viewing-angle displays by controlling the sli-ding three phase contact Line[J]. Adv Opt Mater,2014,2:34.
42 Kyoohee W, et al. Ink-Jet printing of Cu-Ag based highly conductive tracks on a transparent substrate[J]. Langmuir,2009,25:429.
43 Yang Huixian,Su Caohui. Single dispersed Imagolite nanotubes from drying droplet[J]. Chin Sci Bull,2007,52(14):1719.
杨慧娴,苏朝晖.液滴蒸发形成单根分散的合成Imogolite纳米管[J].科学通报,2007,52(14):1719.
44 Shabalin V N, Shatokhina S N. Morphology of body liquids[M]. Moscow: Khrizostom,2001(in Russian).
45 Ajaev V S. Spreading of thin volatile liquid droplets on uniformly heated surfaces[J]. J Fluid Mech,2005,528:279.
46 Popov Y. Evaporative deposition patterns: Spatial dimensions of the deposit[J]. Phys Rev E,2005,71:36313.
47 Rabani E, Reichman D R, Geissler P L, et al. Drying-mediated self-assembly of nanoparticles[J]. Nature,2003,426:271.
48 Vancea I, Thiele U, et al. Front instabilities in evaporatively dewetting nanofluids[J]. Phys Rev E,2008,78:041601.
49 Khellil S. On the formation of regular patterns from drying droplets and their potential use for bio-medical applications[J]. J Bionic Eng,2010,7:S82.
50 Yakhno T A, Sedova O A, et al. On the existence of regular structures in liquid human blood serum (plasma) and phase transitions in the course of its drying[J]. Techn Phys,2003, 48: 399.
[1] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[2] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[3] 董伟, 刘苏磊, 王旭东, 许富民. 脉冲微孔喷射法的应用研究进展[J]. 材料导报, 2025, 39(3): 24020091-9.
[4] 李东翰, 宁舒蕊, 于璐, 廖明义, 张梦霞, 尤诗博, 方庆红. 稀土催化还原体系用于遥爪型低分子量含氟聚合物端基官能化的基础研究[J]. 材料导报, 2025, 39(3): 23100154-9.
[5] 胡乾宇, 陈昆峰, 薛冬峰. 异质界面对磷酸二氢铵单液滴结晶行为的影响[J]. 材料导报, 2025, 39(1): 24010234-5.
[6] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[7] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[8] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[9] 钮政, 罗希, 徐能能, 陈刚, 乔锦丽. 聚乙烯醇基凝胶电解质的制备及在储能器件中的应用[J]. 材料导报, 2024, 38(8): 23040146-11.
[10] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[11] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[12] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[13] 秦怡歆, 曾凯, 邢保英, 张洪申, 何晓聪. 颗粒增强粘接层结构参数对连接强度的影响及工艺优化[J]. 材料导报, 2024, 38(6): 22060206-5.
[14] 陈进, 李默涵, 阮文琳, 孙涛, 刘晓英. SiO2纳米颗粒在润滑领域中的研究与应用现状[J]. 材料导报, 2024, 38(5): 23080225-9.
[15] 严鹏志, 范鹏贤, 王宇, 邢文政. 极端不利环境下氧化铝薄壁空心球粒抗冲击吸波性能试验研究[J]. 材料导报, 2024, 38(23): 23080113-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed