Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 6-18    https://doi.org/10.11896/j.issn.1005-023X.2017.07.002
  材料综述 |
纳米线透明导电薄膜的制备及在光电器件中的应用*
刘萍1,2,曾葆青2,王亚雄1,2,汪江浩1,2
1 电子科技大学中山学院电子信息学院,中山 528402;
2 电子科技大学物理电子学院,成都 610054
Transparent Conductive Nanowires Thin Films: Preparation Methods and Applications in Optoelectronic Devices
LIU Ping1,2, ZENG Baoqing2, WANG Yaxiong1,2, WANG Jianghao1,2
1 College of Electron and Information Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402;
2 School of Physical Electronics, University of Electronic Science and
下载:  全 文 ( PDF ) ( 2631KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于纳米线的透明导电薄膜具有光电性能优异、制备成本低廉以及可用于制备柔性器件等优点,在透明导电薄膜材料领域占据重要地位。文章着眼于阐述纳米线透明导电薄膜的制备及其在光电器件中的应用。首先详细介绍了滴涂、浸渍、抽滤、迈耶棒涂布、旋涂、喷印、印刷等7种制备纳米线透明导电薄膜的方法。光电器件是应用透明导电薄膜的重要领域,文章还介绍了纳米线透明导电薄膜在太阳能电池和电致发光器件中的应用。纳米线透明导电薄膜中,银纳米线和铜纳米线透明导电薄膜最受关注,其制备工艺日趋完善,有望率先在工业应用中取得突破。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘萍
曾葆青
王亚雄
汪江浩
关键词:  银纳米线  铜纳米线  透明导电薄膜  太阳能电池  电致发光器件    
Abstract: The merits of transparent conductive thin films (TCF) based on nanowires include excellent optoelectrical properties, low-cost manufacturing, and applicability for flexible device fabrication. The preparation, patterning and application in optoelectronic devices are introduced for nanowire transparent conductive thin films (NTCF) in this paper, including seven preparation me-thods — drop coating, dip coating, vacuum filtration, Meyer rod coating, spin coating, spray coating and printing, and two applied fields — solar cells and light emitting diodes. In varieties of NTCFs, preparation techniques of silver NTCF and copper NTCF have gained continuous perfection in recent years, so they provoke wide concern and are expected to have a breakthrough in industrial application.
Key words:  silver nanowire    copper nanowire    transparent conductive thin film    solar cell    light-emitting diode
出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  O484  
  TB31  
基金资助: *国家自然科学基金(61571103;11305031)
通讯作者:  曾葆青,男,1964年生,博士,教授,博士研究生导师,研究方向为真空微纳电子学及微波能应用E-mail:bqzeng@uestc.edu.cn   
作者简介:  刘萍:女,1980年生,博士,副教授,研究方向为光电材料与器件的制备及应用研究E-mail:liuping49@126.com
引用本文:    
刘萍, 曾葆青, 王亚雄, 汪江浩. 纳米线透明导电薄膜的制备及在光电器件中的应用*[J]. 《材料导报》期刊社, 2017, 31(7): 6-18.
LIU Ping, ZENG Baoqing, WANG Yaxiong, WANG Jianghao. Transparent Conductive Nanowires Thin Films: Preparation Methods and Applications in Optoelectronic Devices. Materials Reports, 2017, 31(7): 6-18.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.002  或          https://www.mater-rep.com/CN/Y2017/V31/I7/6
1 Han G S, Lee S, Jin Y U, et al. Facile transfer fabrication of transparent, conductive and flexible In2O3:Sn (ITO) nanowire arrays electrode via selective wet-etching ZnO sacrificial layer [J]. Mater Lett,2015,158:304.
2 Liu J L, Zeng B Q, et al. High-current-density edge electron emission and electron beam shaping for vacuum electronics using flexible graphene paper [J]. IEEE Trans Nanotechnol,2014,61(6):1776.
3 Zeng B Q, Xiong G Y, et al. Field emission of silicon nanowires grown on carbon cloth [J]. Appl Phys Lett,2007,90:033112.
4 Khalil R, Homaeigohar S, H?uβler D, et al. A shape tailored gold-conductive polymer nanocomposite as a transparent electrode with extraordinary insensitivity to volatile organic compounds (VOCs) [J]. Sci Rep,2016,6:33895.
5 Sukang Bae, Hyeongkeun Kim, Youngbin Lee, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nat Nanotechnol,2010,5(8):574.
6 Hu L, Hecht D S, Grulner G. Percolation in transparent and conducting carbon nanotube, networks [J]. Nano Lett,2004,4(12):2513.
7 Munsik O, Jin W Y, Jeong H J, et al. Silver nanowire transparent conductive electrodes for high-efficiency Ⅲ—Nitride light-emitting diodes [J]. Sci Rep,2015,5:13483.
8 Ye S, Rathmell A R, Chen Z, et al. Metal nanowire networks: The next generation of transparent conductors [J]. Adv Mater,2014,26(39):6670.
9 Guo C F, Ren Z F. Flexible transparent conductors based on metal nanowire networks [J]. Mater Today,2015,18(3):143.
10 De S, Higgins T M, Lyons P E, et al. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios [J]. ACS Nano,2009,3(7):1767.
11 Wang J, Jiu J, Araki T, et al. Silver nanowire electrodes: Conductivity improvement without post-treatment and application in capacitive pressure sensors [J]. Nano-Micro Lett.2015,7(1):51.
12 Lee J Y, Connor S T, Cui Y. Semitransparent organic photovoltaic cells with laminated top electrode [J]. Nano Lett,2010,10:1276.
13 Lee J Y, Connor S T, Cui Y. Solution-processed metal nanowire mesh transparent electrodes [J]. Nano Lett,2008,8(2):689.
14 Chen R, Das S R, Jeong C, et al. Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes [J]. Adv Funct Mater,2013,23:5150.
15 Chen S, Cui Q, Guo X. Annealing-free solution-processed silver nanowire-polymer composite transparent electrodes and flexible device applications [J]. IEEE Trans Nnotechnol,2015,14(1):36.
16 Sachse C, Meskamp L M, Bormann L, et al. Transparent, dip-coated silver nanowire electrodes for small molecule organic solar cells [J]. Org Electron,2013,14:143.
17 Pu D, Zhou W X, Li Y, et al. Order-enhanced silver nanowire networks fabricated by two-step dip-coating as polymer solar cell electrodes [J]. RSC Adv,2015,5:100725.
18 Chen C Y, Jing M X, Pi Z C, et al. Preparation and properties of double-sided AgNWs/PVC/AgNWs flexible transparent conductive film by dip-coating process [J]. Nanosc Res Lett,2015,10:315.
19 Gan X Y, Li X M, Gao X D, et al. ZnO nanowire/TiO2 nanoparticle photoanodes prepared by the ultrasonic irradiation assisted dip-coa-ting method [J]. Thin Solid Films, 2010, 518: 4809.
20 Xu W, Xu Q, Huang Q, et al. Fabrication of flexible transparent conductive films with silver nanowire by vacuum filtration and PET mold transfer [J]. J Mater Sci Technol,2016,32:158.
21 Won Y, Kim A, Lee D, et al. Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics [J]. NPG Asia Mater,2014,6:e105.
22 Stewart I E, Rathmell A R, Yan L, et al. Solution-processed copper-nickel nanowire anodes for organic solar cells [J]. Nanoscale,2014,6:5980.
23 Mayousse C, Celle C, Carella A, et al. Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrodes with and without PEDOT∶PSS [J]. Nano Res,2014,7(3):315.
24 Liu C H, Yu X. Silver nanowire-based transparent, flexible, and conductive thin film [J]. Nanosc Res Lett,2011,6:75.
25 Miao J, Liu H, Li W, et al. Mussel-inspired polydopamine-functio-nalized graphene as a conductive adhesion promoter and protective layer for silver nanowire transparent electrodes [J]. Langmuir,2016,32:5365.
26 Zhang D, Wang R, Wen M, et al. Synthesis of ultralong copper nanowires for high-performance transparent electrodes [J]. J Am Chem Soc,2012,134:14283.
27 Lee J, Lee P, Lee H, et al. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel [J]. Nanoscale,2012,4:6408.
28 Xiong W, Liu H, Chen Y, et al. Highly conductive, air-stable silver nanowire@iongel composite films toward flexible transparent electrodes [J]. Adv Mater,2016,28(33):7167.
29 Madaria A R, Kumar A, Ishikawa F N, et al. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique [J]. Nano Res,2010,3:564.
30 Hu L, Kim H S, Lee J Y, et al. Scalable coating and properties of transparent, flexible, silver nanowire electrodes [J]. ACS Nano,2010,4(5):2955.
31 Rathmell A R, Wiley B J. The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates [J]. Adv Mater,2011,23:4798.
32 Rathmell A R, Nguyen M, Chi M, et al. Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks [J]. Nano Lett,2012,12(6):3193.
33 Chen Z, Ye S, Wilson A R, et al. Optically transparent hydrogen evolution catalysts made from networks of copper-platinum core-shell nanowires [J]. Energy Environ Sci,2014,7:1461.
34 Ye S, Rathmell A R, Stewart I E, et al. A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films [J]. Chem Commun,2014,50:2562.
35 Li S, Chen Y, et al. Large-scale synthesis of well-disper-sed copper nanowires in an electric pressure cooker and their application in transparent and conductive networks [J]. Inorg Chem,2014,53:4440.
36 Guo X, Guo W, Wang C, et al. AlGaInP LED with low-speed spin-coating silver nanowires as transparent conductive layer [J]. Nanosc Res Lett,2014,9:670.
37 Lagrange M, Langley D P, Giusti G, et al. Optimization of silver nanowire-based transparent electrodes: Effects of density, size and thermal annealing [J]. Nanoscale,2015,7:17410.
38 Hsu P C, Wang S, Wu H, et al. Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires [J]. Nat Commun,2013,4:2522.
39 Seo T H, Lee S, Min K H, et al. The role of graphene formed on silver nanowire transparent conductive electrode in ultraviolet light emitting diodes [J]. Sci Rep,2016,6:29464.
40 Lee D, Lee H, Ahn Y, et al. High-performance flexible transparent conductive film based on graphene/AgNW/graphene sandwich structure [J]. Carbon,2015,81:439.
41 Lee J Y, Shin D, Park J. Fabrication of silver nanowire-based stretchable electrodes using spray coating [J]. Thin Solid Films,2016,608:34.
42 Chu H C, et al. Spray-deposited large-area copper nanowire transparent conductive electrodes and their uses for touch screen applications [J]. ACS Appl Mater Interfaces, 2016,8:13009.
43 Zhu Z, Mankowski T, Balakrishnan K, et al. Ultrahigh aspect ratio copper-nanowire-based hybrid transparent conductive electrodes with PEDOT∶PSS and reduced graphene oxide exhibiting reduced surface roughness and improved stability [J]. ACS Appl Mater Interfaces,2015,7:16223.
44 Seong B, Chae I, Lee H, et al. Spontaneous self-welding of silver nanowire networks [J]. Phys Chem Chem Phys,2015,17:7629.
45 Shin K, Park J, Lee C. A 250-mm-width, flexible, and continuous roll-to-roll slot-die coated carbon nanotube/silver nanowire film fabrication and a study on the effect of anti-reflective overcoat [J]. Thin Solid Films,2016,598:95.
46 Zhu Qing, Zhang Zhejuan, Sun Zhuocaibing, et al. Prepartion of transparent and conductive silver nanowires films by screen printing method [J]. Chin J Inorg Chem,2016,32(5):782 (in Chinese).
朱清,张哲娟,孙卓才滨,等. 丝网印刷法制备银线透明导电薄膜[J]. 无机化学学报,2016, 32(5):782.
47 Scheideler W J, Smith J, et al. A robust, gravure-printed, silver nanowire/metal oxide hybrid electrode for high-throughput patterned transparent conductors [J]. J Mater Chem C, 2016,4:3248.
48 Kang S, Kim T, Cho S, et al. Capillary printing of highly aligned silver nanowire transparent electrodes for high-performance optoelectronic devices [J]. Nano Lett,2015,15:7933.
49 Ajuria J, Ugarte I, Cambarau W, et al. Insights on the working principles of flexible and efficient ITO-free organic solar cells based on solution processed Ag nanowire electrodes [J]. Solar Energy Mater Solar Cells,2012,102:148.
50 Spechler J A, Nagamatsu K A, et al. Improved efficiency of hybrid organic photovoltaics by pulsed laser sintering of silver nanowire network transparent electrode [J]. ACS Appl Mater Interfaces,2015,7:10556.
51 Chen J, Zhou W, Chen J, et al. Solution-processed copper nanowire flexible transparent electrodes with PEDOT∶PSS as binder, protector and oxide-layer scavenger for polymer solar cells [J]. Nano Res,2015,8(3):1017.
52 Liang J, Bi H, Wan D, et al. Novel Cu nanowires/graphene as the back contact for CdTe solar cells [J]. Adv Funct Mater,2012,22:1267.
53 Lee M, Ko Y, Min B K, et al. Silver nanowire top electrodes in flexible perovskite solar cells using titanium metal as substrate [J]. ChemSusChem 2016,9:31.
54 Belenkova T L, Rimmerman D, Mentovich E, et al. UV induced formation of transparent Au-Ag nanowire mesh film for repairable OLED devices [J]. J Mater Chem,2012,22:24042.
55 Im H G, Jung S H, Jin J, et al. Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: A highly oxidation-resistant copper nanowire electrode for flexible optoelectronics [J]. ACS Nano,2014,8(10):10973.
56 Li L, Yu Z, Hu W, et al. efficient flexible phosphorescent polymer light-emitting diodes based on silver nanowire-polymer composite electrode [J]. Adv Mater,2011,23:5563.
57 Bade S R, Li J, Shan X, et al. Fully printed halide perovskite light-emitting diodes with silver nanowire electrodes [J]. ACS Nano 2016,10:1795.
58 Jing P T, Ji W, Zeng Q, et al. Vacuum-free transparent quantum dot light-emitting diodes with silver nanowire cathode [J]. Sci Rep,2015,5:12499.
[1] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[2] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[3] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[4] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[5] 赵登婕, 李康宁, 胡李纳, 闫彤, 杨艳坤, 郝阳, 张晨曦, 郝玉英. 氧化锡电子传输层在正置钙钛矿太阳能电池中的研究进展[J]. 材料导报, 2024, 38(21): 23040102-11.
[6] 何敬敬, 王旭, 牛强. 钙钛矿量子点在光伏电池中的应用进展[J]. 材料导报, 2024, 38(10): 22110228-13.
[7] 张墅野, 邵建航, 何鹏. 银纳米线透明导电薄膜仿真研究现状[J]. 材料导报, 2024, 38(10): 22110190-10.
[8] 王耀武, 王彬彬. 有机电子传输材料在反式钙钛矿太阳能电池中的研究现状[J]. 材料导报, 2024, 38(10): 22100210-11.
[9] 夏鹏, 傅萍, 黄金华, 李佳, 宋伟杰. 硅异质结太阳能电池用透明导电氧化物薄膜的研究现状及发展趋势[J]. 材料导报, 2023, 37(9): 22090082-9.
[10] 周文彩, 王伟, 刘晓鹏, 齐帅, 于浩, 曾红杰, 王川申, 魏晓俊. 透明太阳能电池的研究进展[J]. 材料导报, 2023, 37(8): 21060214-8.
[11] 成健, 廖建飞, 杨震, 孔维畅, 刘顿. 太阳能电池多晶硅表面激光制绒技术研究进展[J]. 材料导报, 2023, 37(6): 21050219-10.
[12] 金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
[13] 黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
[14] 李晨, 陈叶青, 全志鹏, 吴晓仪, 饶鹏鹏, 倪宗铭, 陈岩, 吴文海, 陈钊. 深蓝光发射碳点的改性及在电致发光器件中的应用[J]. 材料导报, 2023, 37(15): 22020030-6.
[15] 高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健, 朱华, 王艳香. SnO2基钙钛矿太阳能电池的发展[J]. 材料导报, 2022, 36(8): 20060037-12.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed