Optimization Design Method for Mix Proportion of Low-carbon Concrete Based on Minimization of Material Cost and Carbon Emission Cost
LIANG Zhuoyue1,2, YU Bo1,*, CAI Shengyuan 1, XIE Weiwei3
1 School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China 2 School of Navigation Engineering, Guangxi Transport Vocational and Technical College, Nanning 530023, China 3 Guangxi Road and Bridge Engineering Group Co., Ltd., Nanning 530200, China
摘要 为满足安全、耐久、经济、低碳等需求,本研究提出了一种综合考虑强度、耐久性、制备成本、碳排放量、工作性能等多性能目标需求的低碳混凝土配合比优化设计方法。首先综合考虑材料成本和碳排放成本,基于碳定价构建了低碳混凝土配合比优化设计的目标函数;然后建立了复掺粉煤灰和矿渣混凝土的抗压强度、氯离子扩散系数和龄期衰减系数的预测模型,进而建立了综合考虑强度、耐久性、工作性能等多性能目标需求的约束条件,构建了基于多性能目标需求的低碳混凝土配合比设计优化模型;最后利用遗传算法求解优化模型,确定了混凝土的水泥用量、粉煤灰用量和矿渣用量等配合比设计参数,并通过与传统方法进行对比分析验证了该方法的有效性。分析结果表明:对于设计强度为35~50 MPa的混凝土,与传统基于强度和工作性能的混凝土配合比设计方法相比,该方法的总成本可以减少40.3~47.8 元·m-3,碳排放量可以降低34.5~43.0 kg CO2-eq·m-3;与基于强度和耐久性的混凝土配合比设计方法相比,该方法的总成本可以减少1.8~24.5 元·m-3,碳排放量可以降低1.7~19.1 kg CO2-eq·m-3。
Abstract: In order to meet the requirements of safety, durability, economy and low carbon, an optimization design method for mix proportion of low-carbon concrete was proposed based on multi-performance requirements of strength, durability, cost, carbon emission and working perfor-mance. The objective function of low-carbon concrete was constructed based on the carbon pricing first by considering the total cost of material and carbon emission. Then the prediction models for compressive strength, chloride diffusion coefficient and aging factor of fly ash and slag concrete were determined. Meanwhile, the constraint conditions for meeting the multi-performance requirements of strength, durability and working performance were constructed. Moreover, the optimization model for mix proportion design of low-carbon concrete with multi-performance objective requirements was established. Finally, the mix proportions such as cement content, fly ash content and slag content of low-carbon concrete were determined by solving the optimization model with the genetic algorithm. The efficiency of the proposed method was validated by comparing it with conventional methods. Analysis results show that the total cost and carbon emission could be reduced by the proposed method about 40.3—47.8 yuan·m-3 and 34.5—43.0 kg CO2-eq·m-3 respectively compared with the conventional mix proportion design method based on strength and working performance, while it may reduce the total cost and carbon emission by 1.8—24.5 yuan·m-3 and 1.7—19.1 kg CO2-eq·m-3 respectively compared with the conventional mix proportion design method based on strength and durability when the design strength of concrete is 35—50 MPa.
1 Jin Z Q, Zhao X, Du Y J, et al. Construction and Building Materials, 2022, 319, 126142. 2 Ma H Y, Song S S, Yu H F, et al. Journal of Building Materials, 2023, 26(8), 897 (in Chinese). 麻海燕, 宋姗姗, 余红发, 等. 建筑材料学报, 2023, 26(8), 897. 3 Yu H F, Da B, Ma H Y, et al. Journal of Building Materials, 2019, 22(6), 993 (in Chinese). 余红发, 达波, 麻海燕, 等. 建筑材料学报, 2019, 22(6), 993. 4 Feng G Y, Jin Z Q, Xiong C S, et al. Material Reports, 2020, 34(8), 8064 (in Chinese). 冯光岩, 金祖权, 熊传胜, 等. 材料导报, 2020, 34(8), 8064. 5 Wu Z Y, Yu H F, Ma H Y, et al. Material Reports, 2019, 33(2), 264 (in Chinese). 吴彰钰, 余红发, 麻海燕, 等. 材料导报, 2019, 33(2), 264. 6 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Specification for mix proportion design of ordinary concrete(JGJ 55-2011), China Architecture & Building Press, China, 2011 (in Chinese). 中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程(JGJ 55-2011), 中国建筑工业出版社, 2011. 7 Yang L F, Zhou M, Chen Z, et al. China Civil Engineering Journal, 2016, 49(12), 65 (in Chinese). 杨绿峰, 周明, 陈正, 等. 土木工程学报, 2016, 49(12), 65. 8 Liu G T, Zhang B S, Yuan J, et al. Concrete, 2003(7), 31 (in Chinese). 刘广同, 张宝生, 袁杰, 等. 混凝土, 2003(7), 31. 9 Chen Q, Ma R, Jiang Z W, et al. Journal of Building Materials, 2020, 23(1), 176 (in Chinese). 陈庆, 马瑞, 蒋正武, 等. 建筑材料学报, 2020, 23(1), 176. 10 Xiao J Z, Deng Q, Xia B. Journal of Architecture and Civil Engineering, 2022, 39(5), 1 (in Chinese). 肖建庄, 邓琪, 夏冰. 建筑科学与工程学报, 2022, 39(5), 1. 11 Yeh I C. Engineering With Computers, 2009, 25, 179. 12 Yeh I C. Cement and Concrete Composites, 2007, 29, 193. 13 Chen H Y, Deng T T, Du T, et al. Cement and Concrete Composites, 2022, 129, 104446. 14 Wu X G, Wang L, Chen H Y, et al. Material Reports, 2022, 36(17), 115 (in Chinese). 吴贤国, 王雷, 陈虹宇, 等. 材料导报, 2022, 36(17), 115. 15 Ren Q B, Li W W, Li M C, et al. Journal of Hydraulic Engineering, 2022, 53(1), 98 (in Chinese). 任秋兵, 李文伟, 李明超, 等. 水利学报, 2022, 53(1), 98. 16 Wang X Y. Sustainability, 2019, 11, 5827. 17 Xiao X D. Study on life cycle carbon emission and life cycle cost of green buildings. Master's Thesis, Beijing Jiaotong University, China, 2021 (in Chinese). 肖旭东. 绿色建筑生命周期碳排放及生命周期成本研究. 硕士学位论文, 北京交通大学, 2021. 18 Yang K H, Jung Y B, Cho M S, et al. Journal of Cleaner Production, 2015, 103, 774. 19 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for building carbon emission calculation(GB/T 51366-2019), China Architecture & Building Press, China, 2019 (in Chinese). 中华人民共和国住房和城乡建设部. 建筑碳排放计算标准(GB/T 51366-2019), 中国建筑工业出版社, 2019. 20 Xu X B, Jin Z Q, Yu Y, et al. Material Reports, 2022, 36(S2), 184 (in Chinese). 徐翔波, 金祖权, 于泳, 等. 材料导报, 2022, 36(S2), 184. 21 Gong W, Yu H F, Ma H Y, et al. Journal of Building Engineering, 2023, 76, 107194. 22 Wang S N, Zeng J J, Fan Z H. China Civil Engineering Journal, 2021, 54(10), 82 (in Chinese). 王胜年, 曾俊杰, 范志宏. 土木工程学报, 2021, 54(10), 82. 23 Mehta P K, Aitcin P C C. Cement Concrete and Aggregates, 1990, 12, 70. 24 Li M Y, Liu Y, Han J G, et al. Journal of Building Materials, 2020, 48(7), 1107 (in Chinese). 黎梦圆, 刘宇, 韩建国, 等. 硅酸盐学报, 2020, 48(7), 1107. 25 Li N, Jin Z Q, Yu Y, et al. Journal of Civil and Environmental Engineering, 2019, 41(6), 71 (in Chinese). 李宁, 金祖权, 于泳, 等. 土木与环境工程学报(中英文), 2019, 41(6), 71. 26 Fan Z H, Yang H C, Yu F. Bulletin of the Chinese Ceramic Society, 2020, 39(8), 2622 (in Chinese). 范志宏, 杨海成, 于方. 硅酸盐通报, 2020, 39(8), 2622. 27 Fan Z H, Zeng J J, Xiong J B, et al. Port & Waterway Engineering, 2019(8), 63 (in Chinese). 范志宏, 曾俊杰, 熊建波, 等. 水运工程, 2019(8), 63. 28 Ehlen M A, Thomas M D A, Bentz E C. Concrete International, 2009, 31, 41. 29 Golafshani E M, Ashour A. Automation in Construction, 2016, 64, 7. 30 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for durability design of concrete structures(GB/T 50476-2019), China Architecture & Building Press, China, 2019 (in Chinese). 中华人民共和国住房和城乡建设部. 混凝土结构耐久性设计标准(GB/T 50476-2019), 中国建筑工业出版社, 2019. 31 Cen X, Wang Q, Shi X, et al. Sustainability, 2019, 11, 1991.