Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 23110068-9    https://doi.org/10.11896/cldb.23110068
  无机非金属及其复合材料 |
不同来源粗骨料混合再生混凝土抗压强度及其预测模型建立
许开成1,2, 王文鹏1,2, 张立卿1,2,*
1 华东交通大学轨道交通基础设施性能监测与保障国家重点实验室,南昌 330013
2 华东交通大学土木建筑学院,南昌 330013
The Compressive Strength and Establishment Its Prediction Model of Concrete with Recycled Coarse Aggregates from Different Sources
XU Kaicheng1,2, WANG Wenpeng1,2, ZHANG Liqing1,2,*
1 State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure, East China Jiaotong University, Nanchang 330013, China
2 School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China
下载:  全 文 ( PDF ) ( 45396KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 粗骨料母材混凝土强度是影响再生混凝土强度的主要因素,但实际工程中使用的商品再生粗骨料的母材混凝土来源及强度未知。为用易测量参数为指标建立混合来源粗骨料再生混凝土抗压强度预测模型,本工作收集制备了五种不同来源的再生粗骨料和一种商品再生粗骨料,按照不同的比例混合制备再生混凝土并进行强度测量。通过分析母材混凝土原始强度与设计强度之比(η)和再生粗骨料表观密度(ρ)、吸水率(ω)的关系,将母材混凝土强度对再生混凝土强度的影响转化为ρ及ω对其的影响,建立了混合再生混凝土抗压强度预测公式。结果表明,混合再生混凝土破坏形式取决于所含低强度粗骨料的比例,当低强度骨料比例由低变高时,破坏从骨料破坏转换为骨料-砂浆界面破坏;将公式计算强度与试验中不同比例粗骨料混合的再生混凝土强度及商品粗骨料混合再生混凝土强度进行对比得出,建立的仅考虑单一因子ρ影响的公式的计算误差在10%以内,同时考虑ρ和ω双因子影响的公式的计算误差在6%以内。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许开成
王文鹏
张立卿
关键词:  不同来源  母材混凝土强度  混合粗骨料再生混凝土  抗压强度  预测模型    
Abstract: The original concrete strength of recycled coarse aggregate is the main factor affecting the strength of recycled concrete. However, it is difficult to confirm the source and strength of original concrete of commercial recycled coarse aggregate used in actual engineering. In order to establish a compressive strength prediction model of concrete with recycled coarse aggregate from various sources using easily measured parameters, five types of recycled coarse aggregate from different sources and one type of commercial recycled coarse aggregate were collected and prepared. The recycled concrete samples with different coarse aggregate mixing ratios were prepared and their strength test were carried out. The relationships between apparent density (ρ), water absorption (ω) and the ratio of original concrete strength to design strength (η) were analyzed. Based on the analysis, the influence of original concrete strength on mixed recycled concrete strength can be converted to ρ and ω, and then the prediction formula of compressive strength of mixed recycled concrete was proposed. The results show that the failure forms of mixed recycled concrete depend on the proportion of coarse aggregate containing with low strength. When the proportion of low-strength recycled aggregate changes from low to high, the failure form is transformed from aggregate failure to aggregate-mortar interface failure. By comparing the calculated strength by the formula and the strength of commercial coarse aggregate mixed recycled concrete by the test, the calculation error of the formula considering only the influence of a single factor ρ is within 10%, and the calculation error of the formula considering the influence of ρ and ω factors is within 6%.
Key words:  different sources    original concrete strength    recycled concrete mixed with coarse aggregate    compressive strength    prediction model
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51968021;52368031);中国博士后科学基金(2022M713497);江西省自然科学基金(20224BAB204067);轨道交通基础设施性能监测与保障国家重点实验室资助(HJGZ2022201)
通讯作者:  *张立卿,博士,华东交通大学土木建筑学院副教授、硕士研究生导师。目前主要从事多功能/智能纳米混凝土与结构、绿色混凝土与结构等方面的教学和科研工作。zlq@ecjtu.edu.cn   
作者简介:  许开成,博士,华东交通大学土木建筑学院教授、博士研究生导师。目前主要从事绿色混凝土材料、组合结构及工程结构耐久性等方面的教学和科研工作。
引用本文:    
许开成, 王文鹏, 张立卿. 不同来源粗骨料混合再生混凝土抗压强度及其预测模型建立[J]. 材料导报, 2025, 39(12): 23110068-9.
XU Kaicheng, WANG Wenpeng, ZHANG Liqing. The Compressive Strength and Establishment Its Prediction Model of Concrete with Recycled Coarse Aggregates from Different Sources. Materials Reports, 2025, 39(12): 23110068-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23110068  或          https://www.mater-rep.com/CN/Y2025/V39/I12/23110068
1 Xu K C, Huang W Y, Zhang L Q, et al. Construction and Building Materials, 2021, 287, 123036.
2 Zhang L Q, Pan Y N, Hu W B, et al. Acta Materiae Compositae Sinica, 2023, 40(3), 1611(in Chinese).
张立卿, 潘延念, 胡文兵, 等. 复合材料学报, 2023, 40(3), 1611.
3 Zhang L Q, Pan Y N, Xu K C, et al. Journal of Cleaner Production, 2022, 377(3), 134300.
4 Li H, Guo Q J, Wang J B, et al. Materials Reports, 2020, 34(13), 13050(in Chinese).
李恒, 郭庆军, 王家滨, 等. 材料导报, 2020, 34(13), 13050.
5 Wang J H, Huang Y, Yang G T, et al. Materials Reports, 2022, 36(S1), 278(in Chinese).
王俊辉, 黄悦, 杨国涛, 等. 材料导报, 2022, 36(S1), 278.
6 Shi C J, Cao Z J, Xie Z B. Materials Reports, 2016, 30(23), 96(in Chinese).
史才军, 曹芷杰, 谢昭彬. 材料导报, 2016, 30(23), 96.
7 Poon C S, Shui Z H, Lam L. Construction and Building Materials, 2004, 18(6), 461.
8 Tam V W Y, Gao X F, Tam C M. Cement and Concrete Research, 2005, 35(6), 1195.
9 Etxeberria M, Va′zquez E, Mari′ A. Magazine of Concrete Research, 2006, 58(10), 683.
10 Xu F W, Tian B, Xu G. Materials Reports, 2022, 36(4), 118(in Chinese).
徐福卫, 田斌, 徐港. 材料导报, 2022, 36(4), 118.
11 Limbachiya M C, Leelawat T, Dhir R. Materials and Structures, 2000, 33(233), 574.
12 Guo Z G, Chen C, Fan B J, et al. Journal of Building Structures, 2016(S2), 94(in Chinese).
郭樟根, 陈晨, 范秉杰, 等. 建筑结构学报, 2016(S2), 94.
13 Chen Z P, Zhan D H, Xu J J. Industrial Construction, 2015, 45(1), 130(in Chinese).
陈宗平, 占东辉, 徐金俊. 工业建筑, 2015, 45(1), 130.
14 Andreu G, Miren E. Construction and Building Materials, 2014, 52, 227.
15 Ajdukiewicz A, Kliszczewicz A. Cement and Concrete Composites, 2002, 24(2), 269.
16 Tabsh S W, Abdelfatah A S. Construction and Building Materials, 2009, 23(2), 1163.
17 Huo H Y, Fan C C, Chen A J, et al. Concrete, 2017(2), 60(in Chinese).
霍洪媛, 范程程, 陈爱玖, 等. 混凝土, 2017(2), 60.
18 Padmini A K, Ramamurthy K, Mathews M S. Construction and Building Materials. 2009, 23(2), 829.
19 Pedro D, de Brito J, Evangelista L. Construction and Building Materials, 2014, 71, 141.
20 Chen H F, Li F E, Dang L B. Concrete, 2011(5), 109(in Chinese).
陈会凡, 李福恩, 党玲博. 混凝土, 2011(5), 109.
21 Wang J N, Xu K D, Li Z X, et, al. China Concrete and Cement Products, 2019(1), 10(in Chinese).
王继娜, 徐开东, 李志新, 等. 混凝土与水泥制品, 2019(1), 10.
22 Xiao J Z, Lei B, Yuan B. Journal of Building Structures, 2008(5), 94(in Chinese).
肖建庄, 雷斌, 袁飚. 建筑结构学报, 2008(5), 94.
23 Yuan B. On values of compressive strength and tensile strength of recycled aggregate concrete. Master’s Thesis, Tongji University, China, 2007 (in Chinese).
袁飚. 再生混凝土抗压抗拉强度取值研究. 硕士学位论文, 同济大学, 2007.
24 Du J T. An experimental and numerical study on stress-strain relationship of recycled concrete under uniaxial loading. Master’s Thesis, Tongji University, China, 2008 (in Chinese).
杜江涛. 再生混凝土单轴受力应力-应变关系试验与数值模拟. 硕士学位论文, 同济大学, 2008.
25 Chen Y. Experimental research on basic mechanical properties of recycled concrete and mortar with aggregates from different sources. Master’s Thesis, Southeast University, China, 2016 (in Chinese).
陈阳. 不同来源再生砂浆及混凝土的基本力学性能试验研究. 硕士学位论文, 东南大学, 2016.
26 Wang X F, Li Q Y, Luo J L, et al. Concrete, 2016(3), 60(in Chinese).
王晓飞, 李秋义, 罗健林, 等. 混凝土, 2016(3), 60.
27 Zhang Y J, He S, Zhang X, et al. Journal of Building Materials, 2012, 15(4), 538(in Chinese).
张永娟, 何舜, 张雄, 等. 建筑材料学报, 2012, 15(4), 538.
28 Guo Y X, Li Q Y, Yue G B, et al. Journal of Building Structures, 2018, 39(4), 153(in Chinese).
郭远新, 李秋义, 岳公冰, 等. 建筑结构学报, 2018, 39(4), 153.
29 Ge P, Huang W, Quan W L, et al. Journal of HuazhongUniversity of Science and Technology (Natural Science Edition), 2021, 49(5), 86(in Chinese).
葛培, 黄炜, 权文立, 等. 华中科技大学学报(自然科学版), 2021, 49(5), 86.
30 China Academy of Building Research. Technical requirements and test method of gravel and crushed stone for ordinary concrete, Hualing Publishing House, China, 1993, pp.12(in Chinese).
中国建筑科学研究院. 普通混凝土用碎石或卵石质量标准及检测方法, 中国华龄出版社, 1993, pp.12.
31 Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Specification for mix proportion design of ordinary concrete:JGJ 55-2011, China Building Industry Press, China, 2011, pp.39(in Chineses).
中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程JGJ 55-2011, 中国建筑工业出版社, 2011, pp.39.
32 Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of concrete physical and mechanical properties, China Building Industry Press, China, 2019, pp.16(in Chinese).
中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准, 中国建筑工业出版社, 2019, pp.16.
33 He C P, Fu X G, Sun X B, et al. China Concrete and Cement Products, 2019(2), 98.
34 Zhou B X, Zhang L, He L F. Journal of Experimental Mechanics, 2017, 32(1), 43(in Chinese).
周伯贤, 张磊, 贺玲凤. 实验力学, 2017, 32(1), 43.
35 Wang G L, Qi S Y, Li J Y, et al. Concrete, 2020(3), 168. (in Chinese).
王国林, 祁尚远, 李聚义, 等. 混凝土, 2020(3), 168.
36 Li J B, Xiao J Z, Huang J. Journal of Building Materials, 2006(3), 297 (in Chinese).
李佳彬, 肖建庄, 黄健. 建筑材料学报, 2006(3), 297.
37 Wang Z W. New Building Materials, 2007(7), 57(in Chinese).
王智威. 新型建筑材料, 2007(7), 57.
38 Ding H J, Wang Z B, Zhang W D. Shangxi Architecture, 2010, 36(20), 131(in Chinese).
丁海军, 王振波, 张卫东. 山西建筑, 2010, 36(20), 131.
39 Chen Z P, Zhou C H, Xu D Y, et al. Chinese Journal of Applied Mechanics, 2017, 34(1), 180 (in Chinese).
陈宗平, 周春恒, 徐定一, 等. 应用力学学报, 2017, 34(1), 180.
40 Xiao J, Li J, Zhang C. Cement and Concrete Research, 2005, 35(6), 1187.
[1] 李刊, 魏智强, 路承功, 蒲育. 纳米SiO2改性聚合物水泥基复合材料孔隙结构演变特征及强度预测[J]. 材料导报, 2025, 39(6): 24070202-10.
[2] 钟新宇, 赖俊英, 阮少钦, 钱晓倩, 钱匡亮. 复合早强剂对掺石灰石粉砂浆强度和水化作用的影响[J]. 材料导报, 2025, 39(5): 24010244-8.
[3] 李自强, 崔素萍, 马忠诚, 王亚丽, 王晶, 刘云, 乔志杨. 机器学习算法用于水泥强度预测的研究进展[J]. 材料导报, 2025, 39(5): 23120133-12.
[4] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[5] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[6] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[7] 何涛, 马国政, 李海庆, 石佳东, 李振, 郭伟玲, 邢志国. 固体润滑齿轮接触疲劳寿命及影响因素研究现状[J]. 材料导报, 2025, 39(1): 23120091-15.
[8] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[9] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[10] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[11] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[12] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[13] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[14] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[15] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed