Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 23120173-8    https://doi.org/10.11896/cldb.23120173
  无机非金属及其复合材料 |
海水海砂混凝土中低合金钢筋钝化膜结构及厚度预测模型
潘杜, 牛荻涛*, 罗大明
西安建筑科技大学土木工程学院,西安 710055
Study on the Structure and Thickness Prediction Model of Passivation Film for Low-alloy Steel Reinforcement in Seawater Sea-sand Concrete
PAN Du, NIU Ditao*, LUO Daming
Department of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055,China
下载:  全 文 ( PDF ) ( 10751KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用电化学手段监测海水海砂混凝土中普通钢筋(OS)和低合金钢筋(LS)钝化膜的形成过程,通过XPS刻蚀技术分析钝化膜的物相组成、结构及厚度,并建立钝化膜厚度预测模型。研究结果表明:海水海砂混凝土中OS和LS均能形成稳定钝化膜;OS钝化膜为主要由Fe的氧化物/氢氧化物构成的双层结构,LS钝化膜除Fe的氧化物/氢氧化物外,还存在Cr的氧化物/氢氧化物,为三层结构,但两种钢筋钝化膜厚度相差较小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘杜
牛荻涛
罗大明
关键词:  耐久性  海水海砂混凝土  低合金钢筋  钝化    
Abstract: Electrochemical methods were employed to monitor the passivation behavior of ordinary steel reinforcement (OS) and low-alloy steel reinforcement (LS) in seawater sea-sand concrete (SSC). The X-ray photoelectron spectroscopy (XPS) was utilized to analyze the phase composition, structure, and thickness of the passivation film, along with the development of a prediction model for passivation film thickness. Experimental results reveal that the passivation film on OS primarily consisted of a dual-layer structure composed of Fe oxides/hydroxides, while the passivation film on LS featured a triple-layer structure with the addition of Cr oxides/hydroxides alongside Fe oxides/hydroxides. Nonetheless, the thickness of the passivation film between the two types of steel bars is relatively equal.
Key words:  durability    seawater sea-sand concrete    low-alloy steel reinforcement    passivation
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  TU528.59  
基金资助: 国家自然科学基金(52078413);深圳市重大科技项目(CJGJZD20220517141806015);西安建筑科技大学优秀博士学位论文培育基金(2023XYBPY008)
通讯作者:  *牛荻涛。国家二级教授,主要从事工程结构耐久性及其对策、既有结构可靠性评定与加固、新型材料与新型结构体系等研究。niuditao@163.com   
作者简介:  潘杜,西安建筑科技大学博士研究生,主要从事混凝土结构耐久性研究。
引用本文:    
潘杜, 牛荻涛, 罗大明. 海水海砂混凝土中低合金钢筋钝化膜结构及厚度预测模型[J]. 材料导报, 2025, 39(6): 23120173-8.
PAN Du, NIU Ditao, LUO Daming. Study on the Structure and Thickness Prediction Model of Passivation Film for Low-alloy Steel Reinforcement in Seawater Sea-sand Concrete. Materials Reports, 2025, 39(6): 23120173-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120173  或          https://www.mater-rep.com/CN/Y2025/V39/I6/23120173
1 Geng J Z, Zhu D J, Guo S C, et al. Materials Reports, 2022, 36 (3), 152(in Chinese).
耿健智, 朱德举, 郭帅成, 等. 材料导报, 2022, 36 (3), 152.
2 Liu J M, Zhang S S, Yu H, et al. Materials Reports, 2023, 37 (18), 94(in Chinese).
刘晋铭, 张寿松, 俞煌, 等.材料导报, 2023, 37 (18), 94.
3 Pan D, Yaseen S A, Chen K Y, et al. Journal of Building Engineering, 2021, 42, 103006.
4 Zhang L, Niu D T, Wen B, et al. Materials Reports, 2022, 36 (6), 98(in Chinese).
张路, 牛荻涛, 文波, 等. 材料导报, 2022, 6 (6), 98.
5 Zhou J L, Ou Z W, Jiang S Y, et al. Journal of Building Materials, 2012, 15 (1), 69(in Chinese).
周俊龙, 欧忠文, 江世永, 等. 建筑材料学报, 2012, 15 (1), 69.
6 Liu M, Cheng X, Li X, et al. Construction and Building Materials, 2015, 93, 884.
7 Zhang L, Niu D T, Wen B, et al. Cement and Concrete Composites, 2021, 120, 104051.
8 Shi J J, Ming J, Wang D Q, et al. Corrosion Science, 2020, 174, 108851.
9 Jin Z Q, Xiong C S, Zhao T J, et al. Cement and Concrete Composites, 2022, 126, 104375.
10 Alhozaimy A, Hussain R, Al-Negheimish A, Cement and Concrete Composites, 2016, 65, 171.
11 Poursaee A, Hansson C M, Cement and Concrete Research, 2007, 37 (7), 1127.
12 Dong B Q, Chen P Y, Xiao B X, et al. Journal of Building Materials, 2023, 26 (3), 259(in Chinese)
董必钦, 陈沛榆, 肖冰心, 等. 建筑材料学报, 2023, 26 (3), 259.
13 ASTM D1141-98, Standard Practice for the Preparation of Substitute Ocean Water.
14 Chang Z T, Cherry B, Marosszeky M, Corrosion Science, 2008, 50 (2), 357.
15 Freire L, Carmezim M J, Ferreira M G S, et al. Electrochimica Acta, 2011, 56 (14), 5280.
16 Aperador R W, Gutierrez R M, Bastidas D M, Corrosion Science, 2009, 51 (9), 2027.
17 Yamashita T, Hayes P, Applied Surface Science, 2008, 254 (8), 2441.
18 Addari D, Elsener B, Rossi A. Electrochimica Acta, 2008, 53 (27), 8078.
19 Faichuk M G, Ramamurthy S, Lau W M, Corrosion Science, 2011, 53 (4), 1383.
20 Freire L, Carmezim M J, Ferreira M G S, et al. Electrochimica Acta, 2010, 55 (21), 6174.
21 Ilevbare G O, Burstein G T, Corrosion Science, 2001, 43 (3), 485.
22 Ai Z Y, Jiang J Y, Sun W, et al. Journal of Southeast University (Natural Science Edition), 2016, 46 (1), 152(in Chinese).
艾志勇, 蒋金洋, 孙伟, 等. 东南大学学报(自然科学版), 2016, 46 (1), 152.
23 Ikonopisov S, Electrochimica Acta, 1977, 22 (10), 1077.
24 Barroux A, Duguet T, Ducommun N, et al. Surfaces and Interfaces, 2021, 22, 100874.
25 Li W S, Luo J L, Corrosion Science, 2002, 44 (8), 1695.
[1] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[2] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[3] 王越, 周本基, 徐能能, 乔锦丽. 可逆锌-空气电池锌阳极研究进展及挑战[J]. 材料导报, 2024, 38(6): 23040162-10.
[4] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[5] 靳红华, 任青阳, 肖宋强, 任小坤. 模拟酸雨侵蚀环境下悬臂抗滑桩耐久性极限寿命预测[J]. 材料导报, 2024, 38(5): 22070148-8.
[6] 赵晓燕, 王冬颖, 程从前, 曹铁山, 刘宝军, 姚景文, 赵杰. 利用电化学和显色检测法分级评估316L不锈钢钝化膜完整性[J]. 材料导报, 2024, 38(3): 22050337-5.
[7] 郑直, 郭乃胜, 金鑫, 房辰泽, 尤占平, 谭忆秋. 水性丙烯酸交通标线涂料研究现状与发展趋势[J]. 材料导报, 2024, 38(21): 22120007-12.
[8] 何永才, 丁蕾, 杨莹, 刘江, 何博, 张永哲, 严辉, 徐希翔. 基于丁二胺盐酸盐钝化的高效钙钛矿/晶硅叠层电池[J]. 材料导报, 2024, 38(20): 23070073-4.
[9] 赵增丰, 蒲紫盈, 林璨, 肖建庄, 姚磊, 姬宸源, 刘雅婕. 免烧陶粒及陶粒混凝土性能研究进展[J]. 材料导报, 2024, 38(20): 23100019-13.
[10] 于乐乐, 王爱国, 仲小凡, 刘开伟, 潘耀辉, 肖必华, 孙道胜. 煤矸石骨料混凝土力学和耐久性能研究进展[J]. 材料导报, 2024, 38(20): 23080244-9.
[11] 褚洪岩, 史文芳, 王群, 蒋金洋. 采用城市生活垃圾焚烧飞灰制备绿色水泥砂浆的可行性研究[J]. 材料导报, 2024, 38(19): 23070076-7.
[12] 杨尊, 李碧雄, 张治博, 李梁慧. 高钛矿渣在水泥混凝土中的研究应用进展[J]. 材料导报, 2024, 38(18): 22120226-9.
[13] 王家滨, 张凯峰, 郑康华, 符梦涛. 完全浸泡再生混凝土Mg2+-SO42--Cl-侵蚀耐久性损伤规律与机理[J]. 材料导报, 2024, 38(18): 23050184-11.
[14] 曾田, 陈啸洋, 王南, 张婷婷, 关岩, 毕万利, 常钧. 镁质胶凝材料综述:研究进展与低碳路径探讨[J]. 材料导报, 2024, 38(17): 24010170-15.
[15] 张立卿, 余家乐, 王云洋, 韩宝国, 陈梦成, 许开成. 渗透结晶水泥基复合材料研究综述[J]. 材料导报, 2024, 38(13): 22100014-16.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[5] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[6] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[7] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[8] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
[9] Hong DONG,Xiaojun SUN,Xin ZHANG,Doudou YANG,Xueliang WANG,Fengming ZHANG. Synthesis and Drug Delivery Properties of Nano Metal-organic Framework ZIF-90[J]. Materials Reports, 2018, 32(2): 189 -192 .
[10] Xinlin LI,Guo JIN,Lixia KANG,Xuejia PANG,Weiqi CAO,Haidou WANG,Binshi XU,Xiufang CUI. Study of Corrosion Behavior of HSn62-1 in Acid,Alkali and Salt Solution[J]. Materials Reports, 2018, 32(2): 228 -233 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed